标签:
SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
int __user *, upeer_addrlen)
{
return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
}
SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
int __user *, upeer_addrlen, int, flags)
{
struct socket *sock, *newsock;
struct file *newfile;
int err, len, newfd, fput_needed;
struct sockaddr_storage address;
if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
{
return -EINVAL;
}
if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
{
flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
}
sock = sockfd_lookup_light(fd, &err, &fput_needed);
if (!sock)
{
goto out;
}
err = -ENFILE;
newsock = sock_alloc(); /*! 1.创建新的sock给新的连接 */
if (!newsock)
{
goto out_put;
}
newsock->type = sock->type;
newsock->ops = sock->ops;
/*
* We don‘t need try_module_get here, as the listening socket (sock)
* has the protocol module (sock->ops->owner) held.
*/
__module_get(newsock->ops->owner);
newfd = get_unused_fd_flags(flags); /*! 2.分配一个fd给新的连接 */
if (unlikely(newfd < 0))
{
err = newfd;
sock_release(newsock);
goto out_put;
}
newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); /*! 3.为newsock创建一个对应的file结构 */
if (unlikely(IS_ERR(newfile)))
{
err = PTR_ERR(newfile);
put_unused_fd(newfd);
sock_release(newsock);
goto out_put;
}
err = security_socket_accept(sock, newsock);
if (err)
{
goto out_fd;
}
err = sock->ops->accept(sock, newsock, sock->file->f_flags); /*! 4.调用Socket层操作函数inet_accept() */
if (err < 0)
{
goto out_fd;
}
if (upeer_sockaddr)
{
if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
&len, 2) < 0)
{
err = -ECONNABORTED;
goto out_fd;
}
err = move_addr_to_user(&address,
len, upeer_sockaddr, upeer_addrlen);
if (err < 0)
{
goto out_fd;
}
}
/* File flags are not inherited via accept() unlike another OSes. */
fd_install(newfd, newfile);
err = newfd;
out_put:
fput_light(sock->file, fput_needed);
out:
return err;
out_fd:
fput(newfile);
put_unused_fd(newfd);
goto out_put;
}
struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
{
struct qstr name = { .name = "" };
struct path path;
struct file *file;
if (dname)
{
name.name = dname;
name.len = strlen(name.name);
}
else if (sock->sk)
{
name.name = sock->sk->sk_prot_creator->name;
name.len = strlen(name.name);
}
path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
if (unlikely(!path.dentry))
{
return ERR_PTR(-ENOMEM);
}
path.mnt = mntget(sock_mnt);
d_instantiate(path.dentry, SOCK_INODE(sock));
file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
&socket_file_ops);
if (unlikely(IS_ERR(file)))
{
/* drop dentry, keep inode */
ihold(path.dentry->d_inode);
path_put(&path);
return file;
}
/*! 注意这里的属性设置 */
sock->file = file;
file->f_flags = O_RDWR | (flags & O_NONBLOCK);
file->private_data = sock;
return file;
}
/*
* Accept a pending connection. The TCP layer now gives BSD semantics.
*/
// <net/ipv4/af_inet.c>
int inet_accept(struct socket *sock, struct socket *newsock, int flags)
{
struct sock *sk1 = sock->sk;
int err = -EINVAL;
/**
* 如果使用的是TCP,则sk_prot为tcp_prot,accept为inet_csk_accept()
* 获取新连接的sock。
*/
struct sock *sk2 = sk1->sk_prot->accept(sk1, flags, &err); /*! 4.1.获取新连接的sock */
if (!sk2)
{
goto do_err;
}
lock_sock(sk2);
sock_rps_record_flow(sk2);
WARN_ON(!((1 << sk2->sk_state) &
(TCPF_ESTABLISHED | TCPF_SYN_RECV |
TCPF_CLOSE_WAIT | TCPF_CLOSE)));
sock_graft(sk2, newsock); /*! 4.2.把sock和socket嫁接起来,让它们能相互索引 */
newsock->state = SS_CONNECTED; /*! 4.3.把新socket的状态设为已连接 */
err = 0;
release_sock(sk2);
do_err:
return err;
}
// <net/Sock.h>
static inline void sock_graft(struct sock *sk, struct socket *parent)
{
write_lock_bh(&sk->sk_callback_lock);
sk->sk_wq = parent->wq;
parent->sk = sk; /*! INET层的socket使用下层的sock服务 */
sk_set_socket(sk, parent);
security_sock_graft(sk, parent);
write_unlock_bh(&sk->sk_callback_lock);
}
// <net/ipv4/Inet_connection_sock.c>
/*
* This will accept the next outstanding connection.
*/
struct sock *inet_csk_accept(struct sock *sk, int flags, int *err)
{
struct inet_connection_sock *icsk = inet_csk(sk);
struct request_sock_queue *queue = &icsk->icsk_accept_queue;
struct sock *newsk;
struct request_sock *req;
int error;
lock_sock(sk);
/* We need to make sure that this socket is listening,
* and that it has something pending.
*/
error = -EINVAL;
if (sk->sk_state != TCP_LISTEN)
{
goto out_err;
}
/* Find already established connection */
if (reqsk_queue_empty(queue)) // 没有ESTABLISHED状态的连接请求块
{
long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
/* If this is a non blocking socket don‘t sleep */
error = -EAGAIN;
if (!timeo)
{
goto out_err;
}
/*! 4.1.1 阻塞等待,直到有全连接。如果用户设置有等待时间,超时后会退出 */
error = inet_csk_wait_for_connect(sk, timeo);
if (error)
{
goto out_err;
}
}
/*! 从全连接队列中取出第一个established状态的连接请求块 */
req = reqsk_queue_remove(queue);
newsk = req->sk;
sk_acceptq_removed(sk);
if (sk->sk_protocol == IPPROTO_TCP && queue->fastopenq != NULL)
{
spin_lock_bh(&queue->fastopenq->lock);
if (tcp_rsk(req)->listener)
{
/* We are still waiting for the final ACK from 3WHS
* so can‘t free req now. Instead, we set req->sk to
* NULL to signify that the child socket is taken
* so reqsk_fastopen_remove() will free the req
* when 3WHS finishes (or is aborted).
*/
req->sk = NULL;
req = NULL;
}
spin_unlock_bh(&queue->fastopenq->lock);
}
out:
release_sock(sk);
if (req)
{
__reqsk_free(req);
}
return newsk;
out_err:
newsk = NULL;
req = NULL;
*err = error;
goto out;
}
// <net/ipv4/Inet_connection_sock.c>
/*
* Wait for an incoming connection, avoid race conditions. This must be called
* with the socket locked.
*/
static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
{
struct inet_connection_sock *icsk = inet_csk(sk);
DEFINE_WAIT(wait);
int err;
/*
* True wake-one mechanism for incoming connections: only
* one process gets woken up, not the ‘whole herd‘.
* Since we do not ‘race & poll‘ for established sockets
* anymore, the common case will execute the loop only once.
*
* Subtle issue: "add_wait_queue_exclusive()" will be added
* after any current non-exclusive waiters, and we know that
* it will always _stay_ after any new non-exclusive waiters
* because all non-exclusive waiters are added at the
* beginning of the wait-queue. As such, it‘s ok to "drop"
* our exclusiveness temporarily when we get woken up without
* having to remove and re-insert us on the wait queue.
*/
for (;;)
{
/*! 把自己加入到等待队列,并且设置自己的状态是可中断的 */
prepare_to_wait_exclusive(sk_sleep(sk), &wait,
TASK_INTERRUPTIBLE);
release_sock(sk);
if (reqsk_queue_empty(&icsk->icsk_accept_queue))
{
/**
* 用户发起的accept操作就停schedule_timeout中
* switch (timeout)
* {
* case MAX_SCHEDULE_TIMEOUT:
* schedule();
* goto out;
* default:
* }
* 根据其实现代码,由于我们一般没有设置timeout值,所以是MAX_SCHEDULE_TIMEOUT的情况,这表示立即进入重新调度,
* 而当前的进程可以处于睡眠,直到被其它事件唤醒。
*/
timeo = schedule_timeout(timeo);
}
sched_annotate_sleep();
lock_sock(sk);
err = 0;
if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
{
break;
}
err = -EINVAL;
if (sk->sk_state != TCP_LISTEN)
{
break;
}
err = sock_intr_errno(timeo);
if (signal_pending(current))
{
break;
}
err = -EAGAIN;
if (!timeo)
{
break;
}
}
/*! 下面把任务设置成TASK_RUNNING状态,然后把当前sock从等待队列中删除 */
finish_wait(sk_sleep(sk), &wait);
return err;
}
标签:
原文地址:http://www.cnblogs.com/fengkang1008/p/4688633.html