标签:
Due to the slow ‘mod‘ and ‘div‘ operations with int64 type, all Delphi solutions for the problem 455 (Sequence analysis) run much slower than the same code written in C++ or Java. We do not guarantee that Delphi solution exists.
You are given a sequence of signed 64-bit integers defined as follows:
where
mod
is a remainder operator. All arithmetic operations are evaluated without overflow checking. Use standard "remainder" operator for programming languages (it differs from the mathematical version; for example in programming, while in mathematics). Use "
long long
" type in C++, "
long
" in Java and "
int64
" in Delphi to store xi and all other values.
Let‘s call a sequence element xp repeatable if it occurs later in the sequence — meaning that there exists such q, q > p, that xq = xp. The first repeatable element M of the sequence is such an element xmthat xm is repeatable, and none of the xp where p < m are repeatable.
Given A, B and C, your task is to find the index of the second occurence of the first repeatable element M in the sequence if the index is less or equal to 2 · 106. Per definition, the first element of the sequence has index 0.
The only line of input contains three signed 64-bit integers: A, B and C (B > 0, C > 0).
Print a single integer — the index of the second occurence of the first repeatable member if it is less or equal to 2 · 106. Print -1 if the index is more than 2 · 106.
sample input |
sample output |
2 2 9 |
4 |
sample input |
sample output |
2305843009213693951 1 9223372036854775807 |
5 |
sample input |
sample output |
-2 1 5 |
4 |
In the first sample test the sequence starts with the following numbers: 1, 3, 7, 6, 3, 7. The first repeatable element is 3. The second occurence of 3 has index 4.
In the second sample test the sequence starts with the following numbers: 1, 2305843009213693951, -4611686018427387903, 6917529027641081855, 0, 0, 0. The first repeatable element is 0. The second occurence of 0 has index 5.
In the third sample test the sequence starts with the following numbers: 1, -2, 4, -3, 1, -2, 4. The first repeatable element is 1. The second occurence of 1 has index 4.
比赛的时候逗了,往看空间限制了....
直接开了个set判重。。。显然MLE 了。。。
然后这道题的正解是 floyd判圈算法(也叫龟兔算法?)
http://www.cnblogs.com/oyking/p/4286916.html 这份题解讲得很详细
1 /************************************************************************* 2 > File Name: code/2015summer/#5/CC.cpp 3 > Author: 111qqz 4 > Email: rkz2013@126.com 5 > Created Time: 2015年07月30日 星期四 21时02分17秒 6 ************************************************************************/ 7 #include<iostream> 8 #include<iomanip> 9 #include<cstdio> 10 #include<algorithm> 11 #include<cmath> 12 #include<cstring> 13 #include<string> 14 #include<map> 15 #include<set> 16 #include<queue> 17 #include<vector> 18 #include<stack> 19 #define y0 abc111qqz 20 #define y1 hust111qqz 21 #define yn hez111qqz 22 #define j1 cute111qqz 23 #define tm crazy111qqz 24 #define lr dying111qqz 25 using namespace std; 26 #define REP(i, n) for (int i=0;i<int(n);++i) 27 typedef long long LL; 28 typedef unsigned long long ULL; 29 const int inf = 0x7fffffff; 30 const int LIM = 2E6; 31 LL a,b,c; 32 LL next (LL x) 33 { 34 return (a*x+x%b)%c; 35 } 36 int main() 37 { 38 cin>>a>>b>>c; 39 LL x = next(1); 40 LL y = next(next(1)); 41 int v = 1; 42 while (v<=LIM &&x!=y) 43 { 44 x = next(x); //乌龟走一步 45 y = next(next(y)); //兔子走两步 46 v++; 47 } 48 if (v>LIM) //在规定范围内找不到循环节(兔子没有和乌龟到同一个位置) 49 { 50 puts("-1"); 51 return 0; 52 } 53 54 x = 1; 55 int mu = 0; //找到循环节的起点 56 while (x!=y) 57 { 58 x = next(x); 59 y = next(y); 60 mu++; 61 } 62 63 int lam = 1; //循环节的长度 64 y = next(x); 65 while (mu+lam <= LIM &&x!=y) 66 { 67 y = next(y); 68 lam++; 69 } 70 if (mu+lam<=LIM) 71 { 72 printf("%d\n",mu+lam); 73 } 74 else 75 { 76 puts("-1"); 77 } 78 79 return 0; 80 }
sgu 455. Sequence analysis (floyd 判圈算法,O(1)空间复杂度求循环节)
标签:
原文地址:http://www.cnblogs.com/111qqz/p/4690649.html