码迷,mamicode.com
首页 > 编程语言 > 详细

spark 集群运行python作业

时间:2015-07-31 18:36:52      阅读:224      评论:0      收藏:0      [点我收藏+]

标签:

今天尝试用刚搭建好的spark集群运行python作业,遇到了一些问题,解决了一些坑的同时也对spark集群的运作和配置方式有了一些比较浅的认识,不像之前那么没有概念了,记录如下,之后还要继续更多的对Hadoop生态圈和spark并行计算框架的探究。

首先说下环境,集群有五个节点,集群环境是用cloudera manager 搭建的,hadoop用的是cloudera的CDH,我对CDH和hadoop之间关系的理解就是与linux和CentOS的关系一样,其他的的相关组件例如Hbase和Hive也是用cloudera安装的,之前我看到服务器上已经有实验室学长下好的spark parcels安装包,于是也没看具体版本就直接用了,之后发现是0.9版本的,略囧。。。因为spark已经发布到1.4版本了,0.9版本都没有spark-submit,而且也不没有R的原生API,不过不影响,直接看0.9的文档就可以了,如果必须用到新版的功能就重新部署吧。。。。。

首先记录一下spark的四种运行模式

  • local:本地单进程模式,用于本地开发测试Spark代码
  • standalone:分布式集群模式,Master-Worker架构,Master负责调度,Worker负责具体Task的执行
  • on yarn/mesos:运行在yarn/mesos等资源管理框架之上,yarn/mesos提供资源管理,spark提供计算调度,并可与其他计算框架(如MapReduce/MPI/Storm)共同运行在同一个集群之上 (使用cloudera搭建的集群就是这种情况)
  • on cloud(EC2):运行在AWS的EC2之上。

下面用python的一个简单作业SimpleApp.py为例,记录下脚本的运行过程

from pyspark import SparkContext,SparkConf

conf=SparkConf()
conf.setMaster("spark://192.168.2.241:7077")
conf.setAppName("test application")


logFile="hdfs://hadoop241:8020/user/root/testfile"
sc=SparkContext(conf=conf)
logData=sc.textFile(logFile).cache()


numAs=logData.filter(lambda s: ‘a‘ in s).count()
numBs=logData.filter(lambda s: ‘b‘ in s).count()

print "Lines with a:%i,lines with b:%i" % (numAs,numBs)

关于这里的问题主要涉及到连接集群的配置问题,也就是上述代码的conf部分,首先要连接集群的master节点,注意这里的配置写法

spark://192.168.2.241:7077

前缀spark不可少,否则会报“could not parse master URL”的错误即无法解析URL的错误,至于端口号可以在/etc/spark/conf中查询$SPARK_MASTER_PORT这个环境变量,(具体安装方式配置文件位置也不同,根据具体情况来确定)

还有

logFile=”hdfs://hadoop241:8020/user/root/testfile”

我观察到这里默认是从hdfs文件系统上读取文件的,所以首先要把待处理文件put到hdfs上,同样注意路径的写法,这里写的是hdfs上得绝对路径,也可以写相对路径
这里的testfile里只有两句话,用来测试作业能否正确执行

stay hungery,stay foolish
steve jobs

之后执行

$ pyspark SimpleApp.py

运行结果贴出如下,可以从中观察运算任务的分配调度过程

[root@hadoop241 workspace]# pyspark SimpleApp.py
15/07/31 16:22:27 INFO slf4j.Slf4jLogger: Slf4jLogger started
15/07/31 16:22:27 INFO Remoting: Starting remoting
15/07/31 16:22:27 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://spark@hadoop241:34248]
15/07/31 16:22:27 INFO Remoting: Remoting now listens on addresses: [akka.tcp://spark@hadoop241:34248]
15/07/31 16:22:27 INFO spark.SparkEnv: Registering BlockManagerMaster
15/07/31 16:22:27 INFO storage.DiskBlockManager: Created local directory at /tmp/spark-local-20150731162227-804b
15/07/31 16:22:27 INFO storage.MemoryStore: MemoryStore started with capacity 294.9 MB.
15/07/31 16:22:27 INFO network.ConnectionManager: Bound socket to port 42522 with id = ConnectionManagerId(hadoop241,42522)
15/07/31 16:22:27 INFO storage.BlockManagerMaster: Trying to register BlockManager
15/07/31 16:22:27 INFO storage.BlockManagerMasterActor$BlockManagerInfo: Registering block manager hadoop241:42522 with 294.9 MB RAM
15/07/31 16:22:27 INFO storage.BlockManagerMaster: Registered BlockManager
15/07/31 16:22:27 INFO spark.HttpServer: Starting HTTP Server
15/07/31 16:22:27 INFO server.Server: jetty-7.6.8.v20121106
15/07/31 16:22:27 INFO server.AbstractConnector: Started SocketConnector@0.0.0.0:42944
15/07/31 16:22:27 INFO broadcast.HttpBroadcast: Broadcast server started at http://192.168.2.241:42944
15/07/31 16:22:27 INFO spark.SparkEnv: Registering MapOutputTracker
15/07/31 16:22:27 INFO spark.HttpFileServer: HTTP File server directory is /tmp/spark-c6a0d067-075c-493b-81c8-754f569a91b5
15/07/31 16:22:27 INFO spark.HttpServer: Starting HTTP Server
15/07/31 16:22:27 INFO server.Server: jetty-7.6.8.v20121106
15/07/31 16:22:27 INFO server.AbstractConnector: Started SocketConnector@0.0.0.0:33063
15/07/31 16:22:27 INFO server.Server: jetty-7.6.8.v20121106
15/07/31 16:22:27 INFO handler.ContextHandler: started o.e.j.s.h.ContextHandler{/storage/rdd,null}
15/07/31 16:22:27 INFO handler.ContextHandler: started o.e.j.s.h.ContextHandler{/storage,null}
15/07/31 16:22:27 INFO handler.ContextHandler: started o.e.j.s.h.ContextHandler{/stages/stage,null}
15/07/31 16:22:27 INFO handler.ContextHandler: started o.e.j.s.h.ContextHandler{/stages/pool,null}
15/07/31 16:22:27 INFO handler.ContextHandler: started o.e.j.s.h.ContextHandler{/stages,null}
15/07/31 16:22:27 INFO handler.ContextHandler: started o.e.j.s.h.ContextHandler{/environment,null}
15/07/31 16:22:27 INFO handler.ContextHandler: started o.e.j.s.h.ContextHandler{/executors,null}
15/07/31 16:22:27 INFO handler.ContextHandler: started o.e.j.s.h.ContextHandler{/metrics/json,null}
15/07/31 16:22:27 INFO handler.ContextHandler: started o.e.j.s.h.ContextHandler{/static,null}
15/07/31 16:22:27 INFO handler.ContextHandler: started o.e.j.s.h.ContextHandler{/,null}
15/07/31 16:22:27 INFO server.AbstractConnector: Started SelectChannelConnector@0.0.0.0:4040
15/07/31 16:22:27 INFO ui.SparkUI: Started Spark Web UI at http://hadoop241:4040
15/07/31 16:22:28 INFO client.AppClient$ClientActor: Connecting to master spark://192.168.2.241:7077...
15/07/31 16:22:28 INFO cluster.SparkDeploySchedulerBackend: Connected to Spark cluster with app ID app-20150731162228-0018
15/07/31 16:22:28 INFO client.AppClient$ClientActor: Executor added: app-20150731162228-0018/0 on worker-20150728175302-hadoop246-7078 (hadoop246:7078) with 16 cores
15/07/31 16:22:28 INFO cluster.SparkDeploySchedulerBackend: Granted executor ID app-20150731162228-0018/0 on hostPort hadoop246:7078 with 16 cores, 512.0 MB RAM
15/07/31 16:22:28 INFO client.AppClient$ClientActor: Executor added: app-20150731162228-0018/1 on worker-20150728175303-hadoop245-7078 (hadoop245:7078) with 8 cores
15/07/31 16:22:28 INFO cluster.SparkDeploySchedulerBackend: Granted executor ID app-20150731162228-0018/1 on hostPort hadoop245:7078 with 8 cores, 512.0 MB RAM
15/07/31 16:22:28 INFO client.AppClient$ClientActor: Executor added: app-20150731162228-0018/2 on worker-20150728175303-hadoop254-7078 (hadoop254:7078) with 8 cores
15/07/31 16:22:28 INFO cluster.SparkDeploySchedulerBackend: Granted executor ID app-20150731162228-0018/2 on hostPort hadoop254:7078 with 8 cores, 512.0 MB RAM
15/07/31 16:22:28 INFO client.AppClient$ClientActor: Executor added: app-20150731162228-0018/3 on worker-20150728175302-hadoop241-7078 (hadoop241:7078) with 8 cores
15/07/31 16:22:28 INFO cluster.SparkDeploySchedulerBackend: Granted executor ID app-20150731162228-0018/3 on hostPort hadoop241:7078 with 8 cores, 512.0 MB RAM
15/07/31 16:22:28 INFO client.AppClient$ClientActor: Executor added: app-20150731162228-0018/4 on worker-20150728175302-hadoop217-7078 (hadoop217:7078) with 8 cores
15/07/31 16:22:28 INFO cluster.SparkDeploySchedulerBackend: Granted executor ID app-20150731162228-0018/4 on hostPort hadoop217:7078 with 8 cores, 512.0 MB RAM
15/07/31 16:22:28 INFO client.AppClient$ClientActor: Executor updated: app-20150731162228-0018/3 is now RUNNING
15/07/31 16:22:28 INFO client.AppClient$ClientActor: Executor updated: app-20150731162228-0018/2 is now RUNNING
15/07/31 16:22:28 INFO client.AppClient$ClientActor: Executor updated: app-20150731162228-0018/1 is now RUNNING
15/07/31 16:22:28 INFO client.AppClient$ClientActor: Executor updated: app-20150731162228-0018/0 is now RUNNING
15/07/31 16:22:28 INFO client.AppClient$ClientActor: Executor updated: app-20150731162228-0018/4 is now RUNNING
15/07/31 16:22:28 INFO storage.MemoryStore: ensureFreeSpace(125687) called with curMem=0, maxMem=309225062
15/07/31 16:22:28 INFO storage.MemoryStore: Block broadcast_0 stored as values to memory (estimated size 122.7 KB, free 294.8 MB)
15/07/31 16:22:29 INFO mapred.FileInputFormat: Total input paths to process : 1
15/07/31 16:22:29 INFO spark.SparkContext: Starting job: count at SimpleApp.py:13
15/07/31 16:22:29 INFO scheduler.DAGScheduler: Got job 0 (count at SimpleApp.py:13) with 2 output partitions (allowLocal=false)
15/07/31 16:22:29 INFO scheduler.DAGScheduler: Final stage: Stage 0 (count at SimpleApp.py:13)
15/07/31 16:22:29 INFO scheduler.DAGScheduler: Parents of final stage: List()
15/07/31 16:22:29 INFO scheduler.DAGScheduler: Missing parents: List()
15/07/31 16:22:29 INFO scheduler.DAGScheduler: Submitting Stage 0 (PythonRDD[2] at count at SimpleApp.py:13), which has no missing parents
15/07/31 16:22:29 INFO scheduler.DAGScheduler: Submitting 2 missing tasks from Stage 0 (PythonRDD[2] at count at SimpleApp.py:13)
15/07/31 16:22:29 INFO scheduler.TaskSchedulerImpl: Adding task set 0.0 with 2 tasks
15/07/31 16:22:29 INFO cluster.SparkDeploySchedulerBackend: Registered executor: Actor[akka.tcp://sparkExecutor@hadoop246:48226/user/Executor#-1281030996] with ID 0
15/07/31 16:22:29 INFO scheduler.TaskSetManager: Starting task 0.0:0 as TID 0 on executor 0: hadoop246 (PROCESS_LOCAL)
15/07/31 16:22:29 INFO scheduler.TaskSetManager: Serialized task 0.0:0 as 3119 bytes in 6 ms
15/07/31 16:22:29 INFO scheduler.TaskSetManager: Starting task 0.0:1 as TID 1 on executor 0: hadoop246 (PROCESS_LOCAL)
15/07/31 16:22:29 INFO scheduler.TaskSetManager: Serialized task 0.0:1 as 3119 bytes in 1 ms
15/07/31 16:22:29 INFO cluster.SparkDeploySchedulerBackend: Registered executor: Actor[akka.tcp://sparkExecutor@hadoop217:34233/user/Executor#-994522395] with ID 4
15/07/31 16:22:30 INFO cluster.SparkDeploySchedulerBackend: Registered executor: Actor[akka.tcp://sparkExecutor@hadoop241:53345/user/Executor#1663802475] with ID 3
15/07/31 16:22:30 INFO storage.BlockManagerMasterActor$BlockManagerInfo: Registering block manager hadoop246:34291 with 294.9 MB RAM
15/07/31 16:22:30 INFO storage.BlockManagerMasterActor$BlockManagerInfo: Registering block manager hadoop217:35324 with 294.9 MB RAM
15/07/31 16:22:30 INFO storage.BlockManagerMasterActor$BlockManagerInfo: Registering block manager hadoop241:54770 with 294.9 MB RAM
15/07/31 16:22:31 INFO cluster.SparkDeploySchedulerBackend: Registered executor: Actor[akka.tcp://sparkExecutor@hadoop254:49492/user/Executor#-967494826] with ID 2
15/07/31 16:22:31 INFO cluster.SparkDeploySchedulerBackend: Registered executor: Actor[akka.tcp://sparkExecutor@hadoop245:34383/user/Executor#266145334] with ID 1
15/07/31 16:22:31 INFO storage.BlockManagerMasterActor$BlockManagerInfo: Registering block manager hadoop254:52135 with 294.9 MB RAM
15/07/31 16:22:31 INFO storage.BlockManagerMasterActor$BlockManagerInfo: Registering block manager hadoop245:16696 with 294.9 MB RAM
15/07/31 16:22:31 INFO storage.BlockManagerMasterActor$BlockManagerInfo: Added rdd_1_0 in memory on hadoop246:34291 (size: 208.0 B, free: 294.9 MB)
15/07/31 16:22:31 INFO storage.BlockManagerMasterActor$BlockManagerInfo: Added rdd_1_1 in memory on hadoop246:34291 (size: 176.0 B, free: 294.9 MB)
15/07/31 16:22:32 INFO scheduler.TaskSetManager: Finished TID 1 in 2128 ms on hadoop246 (progress: 0/2)
15/07/31 16:22:32 INFO scheduler.TaskSetManager: Finished TID 0 in 2142 ms on hadoop246 (progress: 1/2)
15/07/31 16:22:32 INFO scheduler.DAGScheduler: Completed ResultTask(0, 1)
15/07/31 16:22:32 INFO scheduler.TaskSchedulerImpl: Remove TaskSet 0.0 from pool
15/07/31 16:22:32 INFO scheduler.DAGScheduler: Completed ResultTask(0, 0)
15/07/31 16:22:32 INFO scheduler.DAGScheduler: Stage 0 (count at SimpleApp.py:13) finished in 2.476 s
15/07/31 16:22:32 INFO spark.SparkContext: Job finished: count at SimpleApp.py:13, took 2.550761544 s
15/07/31 16:22:32 INFO spark.SparkContext: Starting job: count at SimpleApp.py:14
15/07/31 16:22:32 INFO scheduler.DAGScheduler: Got job 1 (count at SimpleApp.py:14) with 2 output partitions (allowLocal=false)
15/07/31 16:22:32 INFO scheduler.DAGScheduler: Final stage: Stage 1 (count at SimpleApp.py:14)
15/07/31 16:22:32 INFO scheduler.DAGScheduler: Parents of final stage: List()
15/07/31 16:22:32 INFO scheduler.DAGScheduler: Missing parents: List()
15/07/31 16:22:32 INFO scheduler.DAGScheduler: Submitting Stage 1 (PythonRDD[3] at count at SimpleApp.py:14), which has no missing parents
15/07/31 16:22:32 INFO scheduler.DAGScheduler: Submitting 2 missing tasks from Stage 1 (PythonRDD[3] at count at SimpleApp.py:14)
15/07/31 16:22:32 INFO scheduler.TaskSchedulerImpl: Adding task set 1.0 with 2 tasks
15/07/31 16:22:32 INFO scheduler.TaskSetManager: Starting task 1.0:0 as TID 2 on executor 0: hadoop246 (PROCESS_LOCAL)
15/07/31 16:22:32 INFO scheduler.TaskSetManager: Serialized task 1.0:0 as 3121 bytes in 0 ms
15/07/31 16:22:32 INFO scheduler.TaskSetManager: Starting task 1.0:1 as TID 3 on executor 0: hadoop246 (PROCESS_LOCAL)
15/07/31 16:22:32 INFO scheduler.TaskSetManager: Serialized task 1.0:1 as 3121 bytes in 0 ms
15/07/31 16:22:32 INFO scheduler.TaskSetManager: Finished TID 3 in 27 ms on hadoop246 (progress: 0/2)
15/07/31 16:22:32 INFO scheduler.DAGScheduler: Completed ResultTask(1, 1)
15/07/31 16:22:32 INFO scheduler.TaskSetManager: Finished TID 2 in 32 ms on hadoop246 (progress: 1/2)
15/07/31 16:22:32 INFO scheduler.DAGScheduler: Completed ResultTask(1, 0)
15/07/31 16:22:32 INFO scheduler.TaskSchedulerImpl: Remove TaskSet 1.0 from pool
15/07/31 16:22:32 INFO scheduler.DAGScheduler: Stage 1 (count at SimpleApp.py:14) finished in 0.034 s
15/07/31 16:22:32 INFO spark.SparkContext: Job finished: count at SimpleApp.py:14, took 0.04234127 s
Lines with a:1,lines with b:1

版权声明:本文为博主原创文章,未经博主允许不得转载。

spark 集群运行python作业

标签:

原文地址:http://blog.csdn.net/xiaolewennofollow/article/details/47171951

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!