标签:
本文实现了一个多项式的类,类中重载了多项式的加法、减法、乘法,并且对>> 和 << 进行了重载。
其中多项式的输入(输出)格式为: K N1 aN1 N2 aN2 ... NK aNK
其中K表示多项式的系数,NK表示第K项的系数aNk相应的系数,并且多项式的系数递减的序列。
1 //polynomial.h 2 #include <iostream> 3 #include <vector> 4 #include <iomanip> 5 6 class polynomial 7 { 8 private: 9 std::vector<double> coefficient; 10 std::vector<int> radix; 11 public: 12 polynomial(){} 13 polynomial(const polynomial &poly){ *this = poly; } 14 ~polynomial(){} 15 friend polynomial operator+(const polynomial &poly1, const polynomial &poly2); 16 friend polynomial operator-(const polynomial &poly1, const polynomial &poly2); 17 polynomial& operator+=(const polynomial &poly){ *this = *this + poly; return *this; } 18 polynomial& operator-=(const polynomial &poly){ *this = *this - poly; return *this; } 19 friend polynomial operator*(const polynomial &poly1, const polynomial &poly2); 20 friend std::istream& operator>>(std::istream &is, polynomial &poly); 21 friend std::ostream& operator<<(std::ostream &os, const polynomial &poly); 22 }; 23 24 polynomial operator+(const polynomial &poly1, const polynomial &poly2) 25 { 26 polynomial polysum; 27 28 int i = 0, j = 0; 29 while (i<poly1.radix.size() || j<poly2.radix.size()) 30 { 31 //only poly1 32 if (i<poly1.radix.size() && j == poly2.radix.size()) 33 { 34 polysum.radix.push_back(poly1.radix[i]); 35 polysum.coefficient.push_back(poly1.coefficient[i]); 36 i++; 37 } 38 //only poly2 39 else if (j<poly2.radix.size() && i == poly1.radix.size()) 40 { 41 polysum.radix.push_back(poly2.radix[j]); 42 polysum.coefficient.push_back(poly2.coefficient[j]); 43 j++; 44 } 45 //the radix of poly1 greater than poly2 46 else if (poly1.radix[i] > poly2.radix[j]) 47 { 48 polysum.radix.push_back(poly1.radix[i]); 49 polysum.coefficient.push_back(poly1.coefficient[i]); 50 i++; 51 } 52 //the radix of poly1 smaller than poly2 53 else if (poly1.radix[i] < poly2.radix[j]) 54 { 55 polysum.radix.push_back(poly2.radix[j]); 56 polysum.coefficient.push_back(poly2.coefficient[j]); 57 j++; 58 } 59 //the radix of poly1 equal to poly2 60 else 61 { 62 if (poly1.coefficient[i] + poly2.coefficient[j] != 0) 63 { 64 polysum.radix.push_back(poly1.radix[i]); 65 polysum.coefficient.push_back(poly1.coefficient[i] + poly2.coefficient[j]); 66 } 67 i++; 68 j++; 69 } 70 } 71 72 return polysum; 73 } 74 75 polynomial operator-(const polynomial &poly1, const polynomial &poly2) 76 { 77 polynomial negativePoly; 78 79 negativePoly = poly2; 80 for (int i = 0; i < negativePoly.coefficient.size(); i++) 81 negativePoly.coefficient[i] = -negativePoly.coefficient[i]; 82 83 return poly1 + negativePoly; 84 } 85 86 polynomial operator*(const polynomial &poly1, const polynomial &poly2) 87 { 88 polynomial mul; 89 90 int i = 0; 91 while (i < poly2.coefficient.size()) 92 { 93 polynomial part = poly1; 94 double coefficient = poly2.coefficient[i]; 95 int radix = poly2.radix[i]; 96 97 for (int j = 0; j < part.coefficient.size(); j++) 98 { 99 part.radix[j] += radix; 100 part.coefficient[j] *= coefficient; 101 } 102 mul += part; 103 i++; 104 } 105 106 return mul; 107 } 108 109 std::istream& operator>>(std::istream &is, polynomial &poly) 110 { 111 int k; 112 is >> k; 113 for (int i = 0; i<k; i++) 114 { 115 double tmpcoe; 116 int tmprad; 117 is >> tmprad >> tmpcoe; 118 poly.radix.push_back(tmprad); 119 poly.coefficient.push_back(tmpcoe); 120 } 121 122 return is; 123 } 124 125 std::ostream& operator<<(std::ostream &os, const polynomial &poly) 126 { 127 os << poly.radix.size(); 128 if (poly.radix.size() != 0) 129 std::cout << " "; 130 for (int i = 0; i<poly.radix.size(); i++) 131 { 132 os << poly.radix[i] << " " << std::fixed << std::setprecision(1) << poly.coefficient[i]; 133 if (i != poly.radix.size() - 1) 134 os << " "; 135 } 136 137 return os; 138 }
Calculation Of Polynomial(多项式的运算) C++
标签:
原文地址:http://www.cnblogs.com/jackwang822/p/4700361.html