码迷,mamicode.com
首页 > 编程语言 > 详细

机器学习(一)——K-近邻(KNN)算法

时间:2015-08-04 18:39:04      阅读:188      评论:0      收藏:0      [点我收藏+]

标签:

     最近在看《机器学习实战》这本书,因为自己本身很想深入的了解机器学习算法,加之想学python,就在朋友的推荐之下选择了这本书进行学习。 

一 . K-近邻算法(KNN)概述 

    最简单最初级的分类器是将全部的训练数据所对应的类别都记录下来,当测试对象的属性和某个训练对象的属性完全匹配时,便可以对其进行分类。但是怎么可能所有测试对象都会找到与之完全匹配的训练对象呢,其次就是存在一个测试对象同时与多个训练对象匹配,导致一个训练对象被分到了多个类的问题,基于这些问题呢,就产生了KNN。

     KNN是通过测量不同特征值之间的距离进行分类。它的的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。K通常是不大于20的整数。KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。

     下面通过一个简单的例子说明一下:如下图,绿色圆要被决定赋予哪个类,是红色三角形还是蓝色四方形?如果K=3,由于红色三角形所占比例为2/3,绿色圆将被赋予红色三角形那个类,如果K=5,由于蓝色四方形比例为3/5,因此绿色圆被赋予蓝色四方形类。

技术分享 

由此也说明了KNN算法的结果很大程度取决于K的选择。

     在KNN中,通过计算对象间距离来作为各个对象之间的非相似性指标,避免了对象之间的匹配问题,在这里距离一般使用欧氏距离或曼哈顿距离:

                      技术分享

同时,KNN通过依据k个对象中占优的类别进行决策,而不是单一的对象类别决策。这两点就是KNN算法的优势。

   接下来对KNN算法的思想总结一下:就是在训练集中数据和标签已知的情况下,输入测试数据,将测试数据的特征与训练集中对应的特征进行相互比较,找到训练集中与之最为相似的前K个数据,则该测试数据对应的类别就是K个数据中出现次数最多的那个分类,其算法的描述为:

1)计算测试数据与各个训练数据之间的距离;

2)按照距离的递增关系进行排序;

3)选取距离最小的K个点;

4)确定前K个点所在类别的出现频率;

5)返回前K个点中出现频率最高的类别作为测试数据的预测分类。

 

二 .python实现

首先呢,需要说明的是我用的是python3.4.3,里面有一些用法与2.7还是有些出入。

建立一个KNN.py文件对算法的可行性进行验证,如下:

#coding:utf-8

from numpy import *
import operator

##给出训练数据以及对应的类别
def createDataSet():
    group = array([[1.0,2.0],[1.2,0.1],[0.1,1.4],[0.3,3.5]])
    labels = [A,A,B,B]
    return group,labels

###通过KNN进行分类
def classify(input,dataSe t,label,k):
    dataSize = dataSet.shape[0]
    ####计算欧式距离
    diff = tile(input,(dataSize,1)) - dataSet
    sqdiff = diff ** 2
    squareDist = sum(sqdiff,axis = 1)###行向量分别相加,从而得到新的一个行向量
    dist = squareDist ** 0.5
    
    ##对距离进行排序
    sortedDistIndex = argsort(dist)##argsort()根据元素的值从大到小对元素进行排序,返回下标

    classCount={}
    for i in range(k):
        voteLabel = label[sortedDistIndex[i]]
        ###对选取的K个样本所属的类别个数进行统计
        classCount[voteLabel] = classCount.get(voteLabel,0) + 1
    ###选取出现的类别次数最多的类别
    maxCount = 0
    for key,value in classCount.items():
        if value > maxCount:
            maxCount = value
            classes = key

    return classes    

接下来,在命令行窗口输入如下代码:

#-*-coding:utf-8 -*-
import sys
sys.path.append("...文件路径...")
import KNN
from numpy import *
dataSet,labels = KNN.createDataSet()
input = array([1.1,0.3])
K = 3
output = KNN.classify(input,dataSet,labels,K)
print("测试数据为:",input,"分类结果为:",output)

回车之后的结果为:

测试数据为: [ 1.1  0.3] 分类为: A

答案符合我们的预期,要证明算法的准确性,势必还需要通过处理复杂问题进行验证,之后另行说明。

 

这是第一次用python编的一个小程序,势必会遇到各种问题,在此次编程调试过程中遇到了如下问题:

 1 导入.py文件路径有问题,因此需要在最开始加如下代码:

  •   import sys

  sys.path.append("文件路径"),这样就不会存在路径有误的问题了;

   2 在python提示代码存在问题时,一定要及时改正,改正之后保存之后再执行命令行,这一点跟MATLAB是不一样的,所以在python中最好是敲代码的同时在命令行中一段一段的验证;

 3 在调用文件时函数名一定要写正确,否则会出现:‘module‘ object has no attribute ‘creatDataSet‘;

 4 ‘int‘ object has no attribute ‘kclassify‘,这个问题出现的原因是之前我讲文件保存名为k.py,在执行

output = K.classify(input,dataSet,labels,K)这一句就会出错。
以上就是我在调试过程中遇到的一些问题。


三 MATLAB实现
之前一直在用MATLAB做聚类算法的一些优化,其次就是数模的一些常用算法,对于别的算法,还真是没有上手编过,基础还在,思想还在,当然要动手编一下,也是不希望在学python的同时对MATLAB逐渐陌生吧,走走停停,停很重要。
首先,建立KNN.m文件,如下:
%% KNN
clear all
clc
%% data
trainData = [1.0,2.0;1.2,0.1;0.1,1.4;0.3,3.5];
trainClass = [1,1,2,2];
testData = [0.5,2.3];
k = 3;

%% distance
row = size(trainData,1);
col = size(trainData,2);
test = repmat(testData,row,1);
dis = zeros(1,row);
for i = 1:row
    diff = 0;
    for j = 1:col
        diff = diff + (test(i,j) - trainData(i,j)).^2;
    end
    dis(1,i) = diff.^0.5;
end

%% sort
jointDis = [dis;trainClass];
sortDis= sortrows(jointDis);
sortDisClass = sortDis;

%% find
class = sort(2:1:k);
member = unique(class);
num = size(member);

max = 0;
for i = 1:num
    count = find(class == member(i));
    if count > max
        max = count;
        label = member(i);
    end
end

disp(最终的分类结果为:);
fprintf(%d\n,label) 

运行之后的结果是,最终的分类结果为:2。和预期结果一样。

总而言之,用MATLAB的时间相对长点,自然也就得心应手点,不过还是希望早点能将python运用自如吧!

 

好困了,想着早点写完这篇,也就吃完饭没睡觉,完工了!

还希望大家能多提宝贵意见~

 

机器学习(一)——K-近邻(KNN)算法

标签:

原文地址:http://www.cnblogs.com/ybjourney/p/4702562.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!