码迷,mamicode.com
首页 > 编程语言 > 详细

算法-有向图及可达性

时间:2015-08-05 12:26:11      阅读:297      评论:0      收藏:0      [点我收藏+]

标签:

图是由顶点和边连接而成,如果边是没有方向的是就是之前文章中说的无向图,关于无向图可以参考本人之前的文章,如果边是有方向的,则称之为有向图。从顶点A→B,我们可以理解为A到B可达,有向图和无向图一样通过邻接表保存每一条边,由于边是有方向的,因此在添加边的过程中只需要添加一条边即可。关于可达性一个节点数组的可达性,采用的方法是之前的深度优先搜索一样的代码,通过递归将标记位Bool标记位判断数组中每个顶点的可达性。为了测试,选择下面一张有向图:

技术分享

有向图基础

通过图片我们可以发现图中有13个节点,22条边,顶点0指出的节点有1,5,指入的节点有2,6,我们先实现所有顶点指出的节点,之后可以通过反转判断所有节点的指入节点:

@interface Digraph : NSObject

//顶点的总数
@property  (assign,nonatomic) NSInteger  vertexs;
//边的数总数
@property (assign,nonatomic) NSInteger  edges;
//连接点的边
@property (strong,nonatomic)  NSMutableArray  *adjDataSource;

-(instancetype)initWithVertex:(NSInteger)vertexs;
//添加一条有向边 startVertex→endVertex
-(void)addEdges:(NSInteger)startVertex  endVertex:(NSInteger)endVertex;


-(Digraph *)reverse;//该图的反向图

@end

实现代码:

@implementation Digraph

-(instancetype)initWithVertex:(NSInteger)vertexs{
    self=[super init];
    if (self) {
        self.vertexs=vertexs;
        for (NSInteger i=0; i<vertexs; i++) {
            NSMutableArray  *neighbourVertex=[[NSMutableArray alloc]initWithCapacity:1];
            [self.adjDataSource addObject:neighbourVertex];//创建邻接表,将所有链表初始化为空
        }
    }
    return self;
}
//http://www.cnblogs.com/xiaofeixiang
-(void)addEdges:(NSInteger)startVertex endVertex:(NSInteger)endVertex{
    //将endVertex添加到startVertex的链表中
    [self.adjDataSource[startVertex] insertObject:[NSNumber numberWithInteger:endVertex] atIndex:0];
    self.edges=self.edges+1;
}

-(Digraph *)reverse{    
    Digraph  *digraph=[[Digraph alloc]initWithVertex:self.vertexs];
    for (NSInteger i=0; i<self.vertexs; i++) {
        NSMutableArray  *tempArr=self.adjDataSource[i];
        for (NSInteger j=0; j<[tempArr count]; j++) {
            [digraph addEdges:[tempArr[j] integerValue] endVertex:i];
        }
    }
    return digraph;
}

#pragma mark getter and setter
-(NSMutableArray *)adjDataSource{
    if (!_adjDataSource) {
        _adjDataSource=[[NSMutableArray alloc]initWithCapacity:1];
    }
    return _adjDataSource;
}

@end

测试代码:

        Digraph  *graph=[[Digraph alloc]initWithVertex:13];
        [graph addEdges:4 endVertex:2];
        [graph addEdges:2 endVertex:3];
        [graph addEdges:3 endVertex:2];
        [graph addEdges:6 endVertex:0];
        [graph addEdges:0 endVertex:1];
        [graph addEdges:2 endVertex:0];
        [graph addEdges:11 endVertex:12];
        [graph addEdges:12 endVertex:9];
        [graph addEdges:9 endVertex:10];
        [graph addEdges:9 endVertex:11];
        [graph addEdges:8 endVertex:9];
        [graph addEdges:10 endVertex:12];
        [graph addEdges:11 endVertex:4];
        [graph addEdges:4 endVertex:3];
        [graph addEdges:3 endVertex:5];
        [graph addEdges:7 endVertex:8];
        [graph addEdges:8 endVertex:7];
        [graph addEdges:5 endVertex:4];
        [graph addEdges:0 endVertex:5];
        [graph addEdges:6 endVertex:4];
        [graph addEdges:6 endVertex:9];
        [graph addEdges:7 endVertex:6];
        for (NSInteger i=0; i<[graph.adjDataSource count]; i++) {
            NSLog(@"节点%ld指出→的节点:%@",i,[graph.adjDataSource[i] componentsJoinedByString:@"--"]);
        }
        NSLog(@"技术交流群:%@",@"228407086");
        NSLog(@"原文地址:http://www.cnblogs.com/xiaofeixiang");

测试效果:

技术分享

现在可以判断出顶点的指出节点,实现文件中有一个reverse方法将图反转,求出顶点的转入节点:

        Digraph  *digraph=[graph reverse];
        for (NSInteger i=0; i<[digraph.adjDataSource count]; i++) {
            NSLog(@"指入%ld??的节点:%@",i,[digraph.adjDataSource[i] componentsJoinedByString:@"--"]);
        }
        NSLog(@"技术交流群:%@",@"228407086");
        NSLog(@"原文地址:http://www.cnblogs.com/xiaofeixiang");

测试效果:

技术分享

可达性

可达性的判断和之前的深度优先搜索基本没变化,先来看一下需要实现的方法:

@interface DirectedDFS : NSObject

//标记数组
@property  (strong,nonatomic)  NSMutableArray  *marked;

//找到arr中顶点可达的所有顶点
-(instancetype)initDirectedDFSWithVertex:(Digraph *)graph  vertexArr:(NSArray *)arr;
//在graph中找到从vertex可达的所有顶点
-(void)directedDFS:(Digraph *)graph  vertex:(NSInteger)vertex;

//vertex是否可达
-(Boolean)isMarked:(NSInteger)vertex;

@end

实现代码:

@implementation DirectedDFS

#pragma mark  getter and setter
-(NSMutableArray *)marked{
    if (!_marked) {
        _marked=[[NSMutableArray alloc]initWithCapacity:1];
    }
    return _marked;
}


-(instancetype)initDirectedDFSWithVertex:(Digraph *)graph vertexArr:(NSArray *)arr{
    self=[super init];
    if (self) {
        for (NSInteger i=0; i<graph.vertexs;i++) {
            [self.marked addObject:[NSNull null]];
        }
        //遍历有向图中的顶点
        for (NSInteger j=0; j<[arr count]; j++) {
            if (![self isMarked:[arr[j] integerValue]]) {
                [self directedDFS:graph vertex:[arr[j] integerValue]];
            }
        }
    }
    return self;
}
//博客园-FlyElephant:http://www.cnblogs.com/xiaofeixiang/
-(void)directedDFS:(Digraph *)graph vertex:(NSInteger)vertex{
    self.marked[vertex]=[NSNumber numberWithBool:true];
    for (NSInteger i=0; i<[graph.adjDataSource[vertex] count]; i++) {
        NSInteger temp=[[graph.adjDataSource[vertex] objectAtIndex:i] integerValue];
        if (![self isMarked:temp]) {
            [self directedDFS:graph vertex:temp];
        }
    }
}

-(Boolean)isMarked:(NSInteger)vertex{
    return self.marked[vertex]==[NSNull null]?false:[self.marked[vertex] boolValue];
}

@end

测试代码:

        NSArray  *sources=[NSArray arrayWithObjects:@"2", nil];
        DirectedDFS  *directedDFS=[[DirectedDFS alloc]initDirectedDFSWithVertex:graph vertexArr:sources];
        NSMutableArray  *reachableArr=[[NSMutableArray alloc]initWithCapacity:1];
        for (NSInteger i=0; i<graph.vertexs; i++) {
            
            if (directedDFS.marked[i]&&directedDFS.marked[i]!=[NSNull null]) {
                [reachableArr addObject:[NSNumber numberWithInteger:i]];
            }
        }
        NSLog(@"可达的节点:%@",[reachableArr componentsJoinedByString:@"--"]);
        NSLog(@"技术交流群:%@",@"228407086");
        NSLog(@"博客园-FlyElephant:http://www.cnblogs.com/xiaofeixiang");

测试效果:

技术分享 

算法-有向图及可达性

标签:

原文地址:http://www.cnblogs.com/xiaofeixiang/p/4703980.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!