标签:python libsvm svmpredict svmtrain -c
import numpy
import os
#os.chdir(‘C:\Program Files\libsvm-3.16\python’)
os.chdir("F:\\wfpdm\\20150727_1010\\libsvm\\libsvm-3.12\\python")
import sys
sys.path.append('F:\\wfpdm\\20150727_1010\\libsvm\\libsvm-3.12\\python')
from svmutil import *
#y, x = svm_read_problem('../heart_scale')
#m = svm_train(y[:200], x[:200], '-c 10 -t 0 -p 10')
#p_label, p_acc, p_val = svm_predict(y[200:], x[200:], m)
Data_Set = []
Data_Lab = []
for k in range(5):
arr = numpy.random.random([30,45])
lab = [k]*30
for i in numpy.arange(0,30):
j = i%3
arr[i,k*9+j*3:k*9+j*3+3] = arr[i,k*9+j*3:k*9+j*3+3]+100
print arr.shape
Data_Set.append(arr)
Data_Lab.append(lab)
train = Data_Set[0].tolist()
m = svm_train(Data_Lab[0], Data_Set[0].tolist(), '-c 10 -t 0 -p 10')
p_label, p_acc, p_val = svm_predict(Data_Lab[0], Data_Set[0].tolist(), m)版权声明:本文为博主原创文章,未经博主允许不得转载。
标签:python libsvm svmpredict svmtrain -c
原文地址:http://blog.csdn.net/u013630349/article/details/47323883