码迷,mamicode.com
首页 > 编程语言 > 详细

数据挖掘算法之c4.5

时间:2015-08-08 11:56:25      阅读:130      评论:0      收藏:0      [点我收藏+]

标签:

 c4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3 。c4.5对ID3算法做了相对的改进。如下

       1 采用信息增益率代替信息增益。因为使用信息增益时会偏向选取取值更多的属性。

       2 在树的构造过程中进行剪枝

       3 能够完成对连续属性的离散化处理

       4 对不完整数据进行处理

 c4.5算法有如下优点:产生的分类规则易于理解,准确率高。

                      缺点:在构造树的过程中,需要对数据集进行多次的顺序和排序,因而导致算法的低效

  熵:

     变量的不确定性越大,熵也就越大。熵是对信息的量化,不确定性越大,熵也就越大。因此在分类决策树中,可以选择熵最小的属性来作为分类特征。

              技术分享

  信息增益:

           按名称来理解的话,就是前后信息的差值,在决策树分类问题中,即就是决策树在进行属性选择划分前和划分后的信息差值,即可以写成:

             gain()=infobeforeSplit()infoafterSplit() 即 分割前的熵减去分割后的熵

 举例如下

     

Outlook Temperature Humidity Windy Play?
sunny hot high false no
sunny hot high true no
overcast hot high false yes
rain mild high false yes
rain cool normal false yes
rain cool normal true no
overcast cool normal true yes
sunny mild high false no
sunny cool normal false yes
rain mild normal false yes
sunny mild normal true yes
overcast mild high true yes
overcast hot normal false yes
rain mild high true no

 

上面的训练集有4个属性,即属性集合A={OUTLOOK, TEMPERATURE, HUMIDITY, WINDY};而类标签有2个,即类标签集合C={Yes, No},分别表示适合户外运动和不适合户外运动,其实是一个二分类问题。
我们已经计算过信息增益,这里直接列出来,如下所示:
数据集D包含14个训练样本,其中属于类别“Yes”的有9个,属于类别“No”的有5个,则计算其信息熵:

1 Info(D) = -9/14 * log2(9/14) - 5/14 * log2(5/14) = 0.940

下面对属性集中每个属性分别计算信息熵,如下所示:

1 Info(OUTLOOK) = 5/14 * [- 2/5 * log2(2/5) – 3/5 * log2(3/5)] + 4/14 * [ - 4/4 * log2(4/4) - 0/4 * log2(0/4)] + 5/14 * [ - 3/5 * log2(3/5) – 2/5 * log2(2/5)] = 0.694
2 Info(TEMPERATURE) = 4/14 * [- 2/4 * log2(2/4) – 2/4 * log2(2/4)] + 6/14 * [ - 4/6 * log2(4/6) - 2/6 * log2(2/6)] + 4/14 * [ - 3/4 * log2(3/4) – 1/4 * log2(1/4)] = 0.911
3 Info(HUMIDITY) = 7/14 * [- 3/7 * log2(3/7) – 4/7 * log2(4/7)] + 7/14 * [ - 6/7 * log2(6/7) - 1/7 * log2(1/7)] = 0.789
4 Info(WINDY) = 6/14 * [- 3/6 * log2(3/6) – 3/6 * log2(3/6)] + 8/14 * [ - 6/8 * log2(6/8) - 2/8 * log2(2/8)] = 0.892

根据上面的数据,我们可以计算选择第一个根结点所依赖的信息增益值,计算如下所示:

1 Gain(OUTLOOK) = Info(D) - Info(OUTLOOK) = 0.940 - 0.694 = 0.246
2 Gain(TEMPERATURE) = Info(D) - Info(TEMPERATURE) = 0.940 - 0.911 = 0.029
3 Gain(HUMIDITY) = Info(D) - Info(HUMIDITY) = 0.940 - 0.789 = 0.151
4 Gain(WINDY) = Info(D) - Info(WINDY) = 0.940 - 0.892 = 0.048

接下来,我们计算分裂信息度量H(V):

  • OUTLOOK属性

属性OUTLOOK有3个取值,其中Sunny有5个样本、Rainy有5个样本、Overcast有4个样本,则

1 H(OUTLOOK) = - 5/14 * log2(5/14) - 5/14 * log2(5/14) - 4/14 * log2(4/14) = 1.577406282852345
  • TEMPERATURE属性

属性TEMPERATURE有3个取值,其中Hot有4个样本、Mild有6个样本、Cool有4个样本,则

1 H(TEMPERATURE) = - 4/14 * log2(4/14) - 6/14 * log2(6/14) - 4/14 * log2(4/14) = 1.5566567074628228
  • HUMIDITY属性

属性HUMIDITY有2个取值,其中Normal有7个样本、High有7个样本,则

1 H(HUMIDITY) = - 7/14 * log2(7/14) - 7/14 * log2(7/14) = 1.0
  • WINDY属性

属性WINDY有2个取值,其中True有6个样本、False有8个样本,则

1 H(WINDY) = - 6/14 * log2(6/14) - 8/14 * log2(8/14) = 0.9852281360342516

根据上面计算结果,我们可以计算信息增益率,如下所示:

1 IGR(OUTLOOK) = Info(OUTLOOK) / H(OUTLOOK) = 0.246/1.577406282852345 = 0.15595221261270145
2 IGR(TEMPERATURE) = Info(TEMPERATURE) / H(TEMPERATURE) = 0.029 / 1.5566567074628228 = 0.018629669509642094
3 IGR(HUMIDITY) = Info(HUMIDITY) / H(HUMIDITY) = 0.151/1.0 = 0.151
4 IGR(WINDY) = Info(WINDY) / H(WINDY) = 0.048/0.9852281360342516 = 0.0487196804926

 

          

 

数据挖掘算法之c4.5

标签:

原文地址:http://www.cnblogs.com/lotorless/p/4712714.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!