码迷,mamicode.com
首页 > 编程语言 > 详细

机器学习(二)——K-均值聚类(K-means)算法

时间:2015-08-09 07:07:12      阅读:468      评论:0      收藏:0      [点我收藏+]

标签:

 

   最近在看《机器学习实战》这本书,因为自己本身很想深入的了解机器学习算法,加之想学python,就在朋友的推荐之下选择了这本书进行学习,在写这篇文章之前对FCM有过一定的了解,所以对K均值算法有一种莫名的亲切感,言归正传,今天我和大家一起来学习K-均值聚类算法。

一 K-均值聚类(K-means)概述

1. 聚类

     “类”指的是具有相似性的集合。聚类是指将数据集划分为若干类,使得类内之间的数据最为相似,各类之间的数据相似度差别尽可能大。聚类分析就是以相似性为基础,对数据集进行聚类划分,属于无监督学习。

2. 无监督学习和监督学习

     上一篇对KNN进行了验证,和KNN所不同,K-均值聚类属于无监督学习。那么监督学习和无监督学习的区别在哪儿呢?监督学习知道从对象(数据)中学习什么,而无监督学习无需知道所要搜寻的目标,它是根据算法得到数据的共同特征。比如用分类和聚类来说,分类事先就知道所要得到的类别,而聚类则不一样,只是以相似度为基础,将对象分得不同的簇。

 

3. K-means

     k-means算法是一种简单的迭代型聚类算法,采用距离作为相似性指标,从而发现给定数据集中的K个类,且每个类的中心是根据类中所有值的均值得到,每个类用聚类中心来描述。对于给定的一个包含n个d维数据点的数据集X以及要分得的类别K,选取欧式距离作为相似度指标,聚类目标是使得各类的聚类平方和最小,即最小化:

                                                      技术分享

结合最小二乘法和拉格朗日原理,聚类中心为对应类别中各数据点的平均值,同时为了使得算法收敛,在迭代过程中,应使最终的聚类中心尽可能的不变。

4. 算法流程

K-means是一个反复迭代的过程,算法分为四个步骤:

1) 选取数据空间中的K个对象作为初始中心,每个对象代表一个聚类中心;

2) 对于样本中的数据对象,根据它们与这些聚类中心的欧氏距离,按距离最近的准则将它们分到距离离它们最近的聚类中心(最相似)所对应的类;

3) 更新聚类中心:将每个类别中所有对象所对应的均值作为该类别的聚类中心,计算目标函数的值;

4) 判断聚类中心和目标函数的值是否发生改变,若不变,则输出结果,若改变,则返回2)。

用以下例子加以说明:

                技术分享        技术分享 

             图1             图2

                技术分享        技术分享

              图3             图4

图1:给定一个数据集;

图2:根据K = 5初始化聚类中心,保证 聚类中心处于数据空间内;

图3:根据计算类内对象和聚类中心之间的相似度指标,将数据进行划分;

图4:将类内之间数据的均值作为聚类中心,更新聚类中心。

最后判断算法结束与否即可,目的是为了保证算法的收敛。

 

二  python实现

首先,需要说明的是,我采用的是python3.4.3,和2.7还是有些出入。在此,用到了numpy和matplotlib库。

非常抱歉的是,装了许久的matplotlib,总是出现问题,无奈,这部分只能之后补全。

 

三 MATLAB实现

    之前用MATLAB做过一些聚类算法方面的优化,自然使用它相比python更得心应手一点。根据算法的步骤,编程实现,直接上程序:

 

%%%K-means

clear all
clc

%% 构造随机数据 
mu1=[0 0 0];  
S1=[0.23 0 0;0 0.87 0;0 0 0.56]; 
data1=mvnrnd(mu1,S1,100);   %产生高斯分布数据

%%第二类数据
mu2=[1.25 1.25 1.25];
S2=[0.23 0 0;0 0.87 0;0 0 0.56];
data2=mvnrnd(mu2,S2,100);

%第三个类数据
mu3=[-1.25 1.25 -1.25];
S3=[0.23 0 0;0 0.87 0;0 0 0.56];
data3=mvnrnd(mu3,S3,100);

mu4=[1.5 1.5 1.5];
S4=[0.23 0 0;0 0.87 0;0 0 0.56];
data4 =mvnrnd(mu4,S4,100);

%显示数据
figure;
plot3(data1(:,1),data1(:,2),data1(:,3),+);
title(原始数据);
hold on
plot3(data2(:,1),data2(:,2),data2(:,3),r+);
plot3(data3(:,1),data3(:,2),data3(:,3),g+);
plot3(data4(:,1),data4(:,2),data3(:,3),y+);
grid on;


data=[data1;data2;data3;data4];   
[row,col] = size(data);
K = 4;
max_iter = 300;%%迭代次数
min_impro = 0.1;%%%%最小步长
display = 1;%%%判定条件
center = zeros(K,col);
U = zeros(K,col);
%% 初始化聚类中心
mi = zeros(col,1);
ma = zeros(col,1);
for i = 1:col
    mi(i,1) = min(data(:,i));
    ma(i,1) = max(data(:,i));
    center(:,i) = ma(i,1) - (ma(i,1) - mi(i,1)) * rand(K,1);
end

%% 开始迭代
for o = 1:max_iter
    %% 计算欧氏距离,用norm函数
    for i = 1:K
        dist{i} = [];
        for j = 1:row
            dist{i} = [dist{i};data(j,:) - center(i,:)];
        end
    end
    
    minDis = zeros(row,K);
    for i = 1:row
        tem = [];
        for j = 1:K
            tem = [tem norm(dist{j}(i,:))];
        end
        [nmin,index] = min(tem);
        minDis(i,index) = norm(dist{index}(i,:));
    end
    
    
    %% 更新聚类中心
     for i = 1:K
        for j = 1:col
            U(i,j) = sum(minDis(:,i).*data(:,j)) / sum(minDis(:,i));
        end
     end
     
     %% 判定
      if display
   end
   if o >1,
       if max(abs(U - center)) < min_impro;
           break;
       else
           center = U;
       end
   end
end

 %% 返回所属的类别
 class = [];
 for i = 1:row
     dist = [];
     for j = 1:K
         dist = [dist norm(data(i,:) - U(j,:))];
     end
     [nmin,index] = min(dist);
     class = [class;data(i,:) index];
 end
  
 %% 显示最后结果
[m,n] = size(class);
figure;
title(聚类结果);
hold on;
for i=1:row 
    if class(i,4)==1   
         plot3(class(i,1),class(i,2),class(i,3),ro); 
    elseif class(i,4)==2
         plot3(class(i,1),class(i,2),class(i,3),go); 
    elseif class(i,4) == 3
         plot3(class(i,1),class(i,2),class(i,3),bo); 
    else
        plot3(class(i,1),class(i,2),class(i,3),yo); 
    end
end
grid on;

 

最终的结果如下图5和图6:

            技术分享                  技术分享

 

                   图5 原始数据                              图6 聚类结果     

       

总结:在这次程序的调试中,其实出现的问题还是蛮多的,相似度指标依旧选用的是欧氏距离。在之前,一直是按照公式直接计算的,可欧氏距离其实就是2范数啊,2范数属于酉不变范数,因此矩阵的2范数就是矩阵的最大奇异值,在求解过程中可以直接采用norm函数简化。

     上图中的结果可以清晰的看到聚类效果还是挺理想的,要进一步验证的话,可以采取误差分布率或者NMI和ARI这些常用的准则进行衡量聚类结果的优劣,在此我也没有做计算,就此次试验的数据直观的从图上看来还是不错的。既然要验证,我会选取UCI数据库中经常使用的wine数据来进一步导入,结果如下:

技术分享

 

这个结果可以说是挺不理想的,至于原因吧,有可能是数据的维数相对较多,有可能是算法本身性能的原因......在此我也不敢妄加猜测,明天再试试。

当然算法本身性能的原因是存在的,要不然怎么会有FCM等一系列算法的出现,这个以后会详细跟大家讨论的。

 

今天确实是熬得有点晚了,只是突然想写一篇,就赶到这么晚了,还有很多不足待完善......

 

 

 

 

 

 

机器学习(二)——K-均值聚类(K-means)算法

标签:

原文地址:http://www.cnblogs.com/ybjourney/p/4714471.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!