标签:机器学习 machine learning in 生成高次特征 合并原始数据
拼接原始数据:
train_data = pd.read_csv('train.csv') test_data = pd.read_csv('test.csv') all_data = np.vstack((train_data.ix[:,1:-1], test_data.ix[:,1:-1]))
>>> a = np.ones((2,2)) >>> b = np.eye(2) >>> print np.vstack((a,b)) [[ 1. 1.] [ 1. 1.] [ 1. 0.] [ 0. 1.]] >>> print np.hstack((a,b)) [[ 1. 1. 1. 0.] [ 1. 1. 0. 1.]]
生成高(2)次特征:
def group_data(data, degree=2, hash=hash): new_data = [] m,n = data.shape for indicies in combinations(range(n), degree): new_data.append([hash(tuple(v)) for v in data[:,indicies]]) return array(new_data).T
from kaggle
版权声明:本文为博主原创文章,未经博主允许不得转载。
machine learning in coding(python):拼接原始数据;生成高次特征
标签:机器学习 machine learning in 生成高次特征 合并原始数据
原文地址:http://blog.csdn.net/mmc2015/article/details/47405469