标签:
笔者Pierre有一个10高级系统架构师有多年经验,他的主要专业领域是Java EE、中间件和JVM技术。依据他多年的工作实践经验,他发现很多性能问题都是由Java堆容量不足和调优引起的。
以下他将和大家分享很有用的5个Java堆优化技巧。
1.JVM:对难以理解的东西产生恐惧感
千万不要以为,通过配置,调优。就能够排除那些你所不明确的问题。
有些人觉得Java程序猿不需要知道内部JVM内存管理。
毫无疑问,这样的观点明显是错误的,假设想拓宽知识面和提升排除故障能力。你就必需要了解和学习一下JVM内存管理。
对于Java或者是Java EE新手来说,Java Heap调优和故障排除是一项很有挑战的工作。
以下会提供一些典型的案例场景:
client环境面临着有规律的OutOfMemoryError错误而且对业务造成了非常大的影响。
你的开发团队要在如此大的压力下去解决问题。一般会怎么做?
两天后,问题仍然发生(甚至更糟或者略微好点)……
究竟是哪里错了呢?
首先。没有摸清问题根源所在?对开发环境没有正确地进行深层面(规格、负载情况等)理解。网络搜索是一个很优秀的学习方法和知识分享工具。可是你必须结合自己的实际项目。从根本上进行分析解决。
可能缺乏主要的JVM和JVM内存管理技能,阻止你把全部的点给连接起来。
今天讲的第一条技巧是帮助你理解主要的JVM原则及其与众不同的内存空间。
这些知识都是相当重要的。它能够帮助你做出有效的调优策略、更加正确合理的预測将来会产生的影响、提前知道未来须要做哪些调优工作。
以下来看一下JVM參考指南:
JVM内存分为3个内存空间
建议把以下的文章都能看一遍,最好把Sun的Java内存管理白皮书和OpenJDKS实现下载下来并细致阅读。
正如你所示,JVM内存管理比使用Xmx设置最大值更为复杂。
你须要查看每一个角度,包含本地和PermGen需求以及从主机上查看物理内存可用性(CPU core)。
在较大的Java Heap和较小的本地Heap比赛中。32位虚拟机可能会变得相当棘手。
试图在一个32位VM如2.5GB+上设置一个大型堆。依据应用程序占用和线程数量等因素会添加OutOfMemoryError这个异常抛出。64位JVM能够解决问题,但物理资源可用性和垃圾回收成本仍然是有限制的(成本主要集中在GC大小收集上)。
最大并不表示是最好的,所以请不要如果在一个16GB的64位虚拟机上能够执行20个Java EE应用程序。
2.数据和应用程序为王:回想静态占用需求
应用程序以及相关数据将决定Java堆空间占用需求。
通过静态内存,可“预測”以下的内存需求:
越多的类载入器和类在执行时被载入,在HotSpot VM PermGen空间和内部JIT相关优化对象上的需求就越高。
在JVM进程上部署的应用程序越多,对本地内存和PermGen空间的要求就越高。数据缓存并非序列化为一个磁盘或数据库,它将从OldGen空间里面须要额外的内存。
设法对静态内存占用进行合理的评估,在真正进行数据測试之前,设置一些JVM能力起点是很实用的。
对于32位JVM,通常不推荐一个Java堆大小超过2 GB(-Xms2048m,-Xmx2048m),对于Java EE应用程序和线程来说这样将须要足够的内存和本机堆PermGen。
这个评估是非常重要由于太多的应用程序部署在一个32位JVM进程上非常easy导致本机堆耗尽;尤其是在多重线程环境。
对于64位JVM。 一个3GB或者4GB的Java堆/JVM进程是推荐的起点。
3.业务流量设置规则:审查动态内存占用需求
业务流量一般会决定动态内存占用。通过观察各种监控工具能够发现并发用户与请求生成的JVM GC“心跳”。这是因为频繁的创建和垃圾回收短期或者长期对象。
一个典型的32位JVM,Java堆大小设置在2 GB(使用分代&并发收集器)通常为500 MB YoungGen分配空间和1.5 GB的OldGen空间。
最大限度地降低重大GC收集的频率是获得最佳性能的关键因素,所以在高峰的时候理解和评估须要多少内存是很重要的。
再次声明,应用程序类型和数据将决定内存需求。购物车的应用程序类型(长期居住的对象)涉及大型和非序列化会话数据,这个通常须要大型Java堆和非常多OldGen空间。
无状态和XML处理(非常多短命的对象)繁重的应用程序须要适当YoungGen空间。以尽量降低频率主要集合。
比如:
你有5个ear应用程序(2000多个Java类)要部署(包括中间件代码)
正如你所示一样,在如此情况下,32位JVM进程就无法满足。
一个典型的解决方式是进行流量拆分,在几个JVM进程或物理主机(如果有足够的硬件和CPU core可用)上。
大多数时候,业务流量将推动内存占用。
除非你须要大量的数据缓存来实现适当的性能,典型的门户应用站点(媒体)繁重的应用程序需求。数据缓存太多的时候应该用一个黄色的标志标注一下。最好早点去又一次审视一下一些设计元素。
4.量体裁衣
这一条,你应该做到:
假设须要多个JVM(中间件)过程。
等一下。这样做并不足够。尽管上面的信息是至关重要的,而且关于Java堆的设置进行了“最佳推測”。相应用程序的行为进行模拟而且进行适当的分析、负载和性能測试来验证Java堆内存要求。
推荐Jprofiler工具给大家,学习怎样使用一个分析器的最好方法是正确理解应用程序的内存占用。还有一个方法是使用Eclipse MAT工具依据现有的环境进行堆转储分析。
堆转储很强大,它能够同意你查看和理解Java堆的整个内存占用,包括类载入器相关数据和在内存占用分析中必需要做的,特别是内存泄漏。
Java分析器和堆转储分析工具同意你理解和验证应用程序内存足迹。包括内存泄漏的检測和解决方式。
负载測试和性能測试是不可缺少的,通过模拟并发用户来验证早期评估是否正确,它也会把应用程序瓶颈暴露出来而且同意你进行微调。推荐一个很easy上手的工具:Apache Jmeter。
最后将看一下这种情况。应用程序在Java EE环境很正常,直到有一天全然正常的设备启动失败,比如硬件问题。
突然的环境执行能力下降和总体环境下降,究竟发生了什么?
引起“多米诺效应”的原因有非常多,但缺少JVM调优和处理故障转移的能力(短期额外负荷)是非经常见的。
假设JVM进程执行在80% + OldGen空间容量和频繁的垃圾收集,你怎样预期故障转移场景?
前面模拟的负载和性能測试应该模拟这种场景,调整你的调优设置使您的Java堆有足够的缓冲来处理额外的负载(额外的对象)在短期内。
这主要适用于动态内存占用,因为故障转移意味着将重定向一些固定的并发用户给可利用的JVM进程(中间件实例)。
5.分而治之
这一条的前提是你已经完毕了几十个负载測试。JVM已经不存在泄露,你的应用程序内存不能再进行不论什么降低。你已经尝试了几个调优策略。比如使用一个64位的Java堆空间在10GB以上。多个GC策略,虽然这样,仍然没有找到合适的能够接受的性能水平?
与当前的JVM规范相比。适当的垂直和水平伸缩。包含在每一个物理主机和跨多个主机上建立JVM进程来满足整个吞吐量和容量。假设在几个逻辑仓、自身的JVM进程、线程和调优值里打破应用程序列表那么IT环境的容错能力将更强大。
“分而治之”策略包含拆分应用程序流量到多个JVM进程,以下提供一些拆分技巧:
当你发现已经花费了大量的时间在64位JVM进程调优上,是时候该好好审视一下你的中间件和JVM部署策略而且利用垂直和水平缩放。这条策略的许多认识需要支持其他硬件,但是从长远来看,。这是非常有效的,故意的。(章卢南/编)
版权声明:本文博客原创文章。博客,未经同意,不得转载。
标签:
原文地址:http://www.cnblogs.com/hrhguanli/p/4727836.html