码迷,mamicode.com
首页 > 编程语言 > 详细

Codeforces 570D TREE REQUESTS dfs序+树状数组

时间:2015-08-14 21:32:22      阅读:510      评论:0      收藏:0      [点我收藏+]

标签:

链接

题解链接:点击打开链接

题意:

给定n个点的树,m个询问

下面n-1个数给出每个点的父节点,1是root

每个点有一个字母

下面n个小写字母给出每个点的字母。

下面m行给出询问:

询问形如 (u, deep) 问u点的子树中,距离根的深度为deep的所有点的字母能否在任意排列后组成回文串,能输出Yes.

思路:dfs序,给点重新标号,dfs进入u点的时间戳记为l[u], 离开的时间戳记为r[u], 这样对于某个点u,他的子树节点对应区间都在区间 [l[u], r[u]]内。

把距离根深度相同的点都存到vector里 D[i] 表示深度为i的所有点,在dfs时可以顺便求出。

把询问按深度排序,query[i]表示所有深度为i的询问。

接下来按照深度一层层处理。

对于第i层,把所有处于第i层的节点都更新到26个树状数组上。

然后处理询问,直接查询树状数组上有多少种字母是奇数个的,显然奇数个字母的种数要<=1

处理完第i层,就把树状数组逆向操作,相当于清空树状数组

注意的一个地方就是 询问的深度是任意的,也就是说可能超过实际树的深度,也可能比当前点的深度小。。所以需要初始化一下答案。。


#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <stdio.h>  
#include <iostream>  
#include <algorithm>  
#include <sstream>  
#include <stdlib.h>  
#include <string.h>  
#include <limits.h>  
#include <vector>  
#include <string>  
#include <time.h>  
#include <math.h>  
#include <iomanip>  
#include <queue>  
#include <stack>  
#include <set>  
#include <map>  
const int inf = 1e9;
const double eps = 1e-8;
const double pi = acos(-1.0);
template <class T>
inline bool rd(T &ret) {
	char c; int sgn;
	if (c = getchar(), c == EOF) return 0;
	while (c != '-' && (c<'0' || c>'9')) c = getchar();
	sgn = (c == '-') ? -1 : 1;
	ret = (c == '-') ? 0 : (c - '0');
	while (c = getchar(), c >= '0'&&c <= '9') ret = ret * 10 + (c - '0');
	ret *= sgn;
	return 1;
}
template <class T>
inline void pt(T x) {
	if (x < 0) { putchar('-'); x = -x; }
	if (x > 9) pt(x / 10);
	putchar(x % 10 + '0');
}
using namespace std;
const int N = 5e5 + 100;
typedef long long ll;
typedef pair<int, int> pii;
struct BIT {
	int c[N], maxn;
	void init(int n) { maxn = n; memset(c, 0, sizeof c); }
	inline int Lowbit(int x) { return x&(-x); }
	void change(int i, int x)//i点增量为x
	{
		while (i <= maxn)
		{
			c[i] += x;
			i += Lowbit(i);
		}
	}
	int sum(int x) {//区间求和 [1,x]
		int ans = 0;
		for (int i = x; i >= 1; i -= Lowbit(i))
			ans += c[i];
		return ans;
	}
	int query(int l, int r) {
		return sum(r) + sum(l - 1); 
	}
}t[26];
int n, m;
char s[N];
vector<int>G[N], D[N];
int l[N], r[N], top;
vector<pii>query[N];
bool ans[N];
void dfs(int u, int fa, int dep) {
	D[dep].push_back(u);
	l[u] = ++top;
	for (auto v : G[u])
		if (v != fa)dfs(v, u, dep + 1);
	r[u] = top;
}
int main() {
	rd(n); rd(m);
	fill(ans, ans + m + 10, 1);
	for (int i = 0; i < 26; i++) t[i].init(n);
	for (int i = 2, u; i <= n; i++)rd(u), G[u].push_back(i);
	top = 0;
	dfs(1, 1, 1);
	scanf("%s", s + 1);
	for (int i = 1, u, v; i <= m; i++) {
		rd(u); rd(v); query[v].push_back(pii(u, i));
	}
	for (int i = 1; i <= n; i++)
	{
		if (D[i].size() == 0)break;
		for (auto v : D[i])	t[s[v] - 'a'].change(l[v], 1);
		
		for (pii Q : query[i])
		{
			int ou = 0;
			for (int j = 0; j < 26; j++)
			{
				if (t[j].query(l[Q.first], r[Q.first]))
					ou += t[j].query(l[Q.first], r[Q.first]) & 1;
			}
			ans[Q.second] = ou <= 1;
		}
		for (auto v : D[i])	t[s[v] - 'a'].change(l[v], -1);
	}
	for (int i = 1; i <= m; i++)ans[i] ? puts("Yes") : puts("No");

	return 0;
}

D. Tree Requests
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Roman planted a tree consisting of n vertices. Each vertex contains a lowercase English letter. Vertex 1 is the root of the tree, each of the n?-?1 remaining vertices has a parent in the tree. Vertex is connected with its parent by an edge. The parent of vertex i is vertex pi, the parent index is always less than the index of the vertex (i.e., pi?<?i).

The depth of the vertex is the number of nodes on the path from the root to v along the edges. In particular, the depth of the root is equal to 1.

We say that vertex u is in the subtree of vertex v, if we can get from u to v, moving from the vertex to the parent. In particular, vertex v is in its subtree.

Roma gives you m queries, the i-th of which consists of two numbers vihi. Let‘s consider the vertices in the subtree vi located at depthhi. Determine whether you can use the letters written at these vertices to make a string that is a palindrome. The letters that are written in the vertexes, can be rearranged in any order to make a palindrome, but all letters should be used.

Input

The first line contains two integers nm (1?≤?n,?m?≤?500?000) — the number of nodes in the tree and queries, respectively.

The following line contains n?-?1 integers p2,?p3,?...,?pn — the parents of vertices from the second to the n-th (1?≤?pi?<?i).

The next line contains n lowercase English letters, the i-th of these letters is written on vertex i.

Next m lines describe the queries, the i-th line contains two numbers vihi (1?≤?vi,?hi?≤?n) — the vertex and the depth that appear in thei-th query.

Output

Print m lines. In the i-th line print "Yes" (without the quotes), if in the i-th query you can make a palindrome from the letters written on the vertices, otherwise print "No" (without the quotes).

Sample test(s)
input
6 5
1 1 1 3 3
zacccd
1 1
3 3
4 1
6 1
1 2
output
Yes
No
Yes
Yes
Yes
Note

String s is a palindrome if reads the same from left to right and from right to left. In particular, an empty string is a palindrome.

Clarification for the sample test.

In the first query there exists only a vertex 1 satisfying all the conditions, we can form a palindrome "z".

In the second query vertices 5 and 6 satisfy condititions, they contain letters "с" and "d" respectively. It is impossible to form a palindrome of them.

In the third query there exist no vertices at depth 1 and in subtree of 4. We may form an empty palindrome.

In the fourth query there exist no vertices in subtree of 6 at depth 1. We may form an empty palindrome.

In the fifth query there vertices 2, 3 and 4 satisfying all conditions above, they contain letters "a", "c" and "c". We may form a palindrome "cac".


版权声明:本文为博主原创文章,未经博主允许不得转载。

Codeforces 570D TREE REQUESTS dfs序+树状数组

标签:

原文地址:http://blog.csdn.net/qq574857122/article/details/47666941

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!