标签:
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 4251 | Accepted: 1223 |
Description
Yixght is a manager of the company called SzqNetwork(SN). Now she‘s very worried because she has just received a bad news which denotes that DxtNetwork(DN), the SN‘s business rival, intents to attack the network of SN. More unfortunately, the original network of SN is so weak that we can just treat it as a tree. Formally, there are N nodes in SN‘s network, N-1 bidirectional channels to connect the nodes, and there always exists a route from any node to another. In order to protect the network from the attack, Yixght builds M new bidirectional channels between some of the nodes.
As the DN‘s best hacker, you can exactly destory two channels, one in the original network and the other among the M new channels. Now your higher-up wants to know how many ways you can divide the network of SN into at least two parts.
Input
The first line of the input file contains two integers: N (1 ≤ N ≤ 100 000), M (1 ≤ M ≤ 100 000) — the number of the nodes and the number of the new channels.
Following N-1 lines represent the channels in the original network of SN, each pair (a,b) denote that there is a channel between node a and node b.
Following M lines represent the new channels in the network, each pair (a,b) denote that a new channel between node a and node b is added to the network of SN.
Output
Output a single integer — the number of ways to divide the network into at least two parts.
Sample Input
4 1 1 2 2 3 1 4 3 4
Sample Output
3
题意:给你一个N个点构成的树(N-1条边),又给你M条新边。现在要求你破坏一条树边和一条新边使得树分成两个部分。问这样的方案有多少种。
分析:树是无环的,在增加新边后必定成环。
这样对于每条边,根据它被环覆盖的情况可以分为三类
一,覆盖次数为0,显然只要破坏这条边就完成任务了,但题目还要求破坏一条新边。这样的话显然有M种方案(有M条新边嘛)。
二,覆盖次数为1(说明它所在环中只增加了一条新边),这样我们仅仅破坏它一条边是不够的,还要把它所在环中的新边破坏掉。这样的话方案只有一种。
三:覆盖次数大于1(说明它所在环中不只增加了一条新边),这种情况下,在破坏这条边后还需要破坏掉环中所有的新边,这样破坏新边的条数大于1了,不合题意。因此这种情况下对这条边采取任何措施都是不行的,方案数为0。
这样问题就变成——求出所有边被环覆盖次数。
思路:用num[v]记录<u,v>被覆盖的次数,其中u在DFS树中是v的父节点。
对于每条新加入的边<u,v>,有 num[u]++,num[v]++,num[LCA(u,v)] -= 2。这样处理是为了方便自底向上计算num值。因为对于LCA(u, v)的num值,自底向上计算num值时,我们必然会加上num[u]和num[v]的值,为了除去多算的num值,LCA(u, v)当然要减2。给个图,务必自己模拟下。
如图所示:<4,5>新加的边,LCA(4, 5) = 2.
num[4] = num[5] = 1, num[2] = -2;
DFS(2)时,遍历到4和5回溯的时候,num[2] += num[4],num[2] += num[5]。
LCA的求法还是用 LCA转RMQ 实现的。
LCA转RMQ模板看这里:看模板点我
AC代码:提醒 用vector建图会TLE。
#include <cstdio> #include <cstring> #include <queue> #include <stack> #include <vector> #include <algorithm> #define MAXN 100000+10 #define MAXM 200000+10 using namespace std; struct Edge { int from, to, next; }; Edge edge[MAXM]; int head[MAXN], edgenum; int vs[MAXN<<1], depth[MAXN<<1]; int id[MAXN]; int dfs_clock; int N, M; //vector<int> G[MAXN]; void init() { edgenum = 0; memset(head, -1, sizeof(head)); } void addEdge(int u, int v) { Edge E = {u, v, head[u]}; edge[edgenum] = E; head[u] = edgenum++; } void getMap() { int a, b; for(int i = 1; i < N; i++) scanf("%d%d", &a, &b), addEdge(a, b), addEdge(b, a); //G[a].push_back(b); //G[b].push_back(a); } int dp[MAXN<<1][30]; void RMQ_init(int NN) { for(int i = 1; i <= NN; i++) dp[i][0] = i; for(int j = 1; (1<<j) <= NN; j++) { for(int i = 1; i + (1<<j) - 1 <= NN; i++) { int a = dp[i][j-1]; int b = dp[i+(1<<(j-1))][j-1]; if(depth[a] < depth[b]) dp[i][j] = a; else dp[i][j] = b; } } } int query(int L, int R) { int k = 0; while((1<<(k+1)) <= R-L+1) k++; int a = dp[L][k]; int b = dp[R-(1<<k)+1][k]; if(depth[a] < depth[b]) return a; else return b; } int LCA(int u, int v) { int x = id[u]; int y = id[v]; if(x < y) return vs[query(x, y)]; else return vs[query(y, x)]; } void DFS(int u, int fa, int d) { id[u] = dfs_clock; vs[dfs_clock] = u; depth[dfs_clock++] = d; for(int i = head[u]; i != -1; i = edge[i].next) //for(int i = 0; i < G[u].size(); i++) { //int v = G[u][i]; int v = edge[i].to; if(v == fa) continue; DFS(v, u, d+1); vs[dfs_clock] = u; depth[dfs_clock++] = d; } } void find_depth() { memset(vs, 0, sizeof(vs)); memset(depth, 0, sizeof(depth)); memset(id, 0, sizeof(id)); dfs_clock = 1; DFS(1, -1, 0); } int num[MAXN];//num[v]记录<u,v>被环覆盖次数 void worknum(int u, int fa) { for(int i = head[u]; i != -1; i = edge[i].next) //for(int i = 0; i < G[u].size(); i++) { //int v = G[u][i]; int v = edge[i].to; if(v == fa) continue; worknum(v, u); num[u] += num[v]; } } void solve() { find_depth(); RMQ_init(dfs_clock - 1); memset(num, 0, sizeof(num)); for(int i = 1; i <= M; i++)//新边 { int a, b; scanf("%d%d", &a, &b); num[a]++; num[b]++; num[LCA(a, b)] -= 2; } worknum(1, -1);//计算所有树边的num值 int ans = 0; for(int i = 2; i <= N; i++) { if(num[i] == 0)//树边没有被覆盖 ans += M; else if(num[i] == 1)//树边被覆盖一次 ans += 1; } printf("%d\n", ans); } int main() { while(scanf("%d%d", &N, &M) != EOF) { init(); getMap(); solve(); } return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。
poj 3417 Network 【LCA】【树中增新边后 求每条树边被环所覆盖的次数】
标签:
原文地址:http://blog.csdn.net/chenzhenyu123456/article/details/47684369