标签:
之前有看过关于FCM算法的资料,接下来的这几天我就自己学到的一些东西与大家分享~
一 FCM算法概述
FCM算法的全称是模糊C均值聚类算法,和K-means算法同属于聚类算法,但却有着本质的区别,就其命名而言,模糊二字无疑是该算法的重点,下面就先简单介绍一下:
1. 隶属度和模糊集
隶属度函数用来描述元素x属于一个集合B的程度,假定为UB(x),其中x为B中的任意元素,UB(x)的取值范围为[0,1]。在隶属度函数的基础上,称空间上X={x}上的隶属度函数为一个模糊集合。
2. 模糊聚类分析
传统的聚类分析是把每个元素严格的划分到一个类中,属于硬划分。模糊聚类分析将聚类生成的每个簇均看做模糊集合,通过隶属度来确定聚类关系,是一种柔性划分,得到元素属于各个簇的不确定性程度,使得聚类结果更加准确灵活,因此,模糊聚类分析逐渐成为聚类分析的主流。
3.FCM
FCM算法是将N个L维向量分为C个模糊组,通过迭代不断更新隶属度以及聚类中心,最小化目标函数对数据进行聚类。
其中,目标函数为:
约束条件为:
根据隶属度的非负性,有。这里,m指的是模糊加权系数,它的值大于1;d(xi,vc)表示的是第i个数据点与第c个聚类中心的欧式距离;uic是隶属度矩阵中的元素,且[0,1];vc是对应于每个聚类的聚类中心。
为了求含有约束条件的目标函数的极值,引入拉格朗日因子构造新的目标函数:
对于目标函数求极值的最优化条件如下:
从而得到隶属度和聚类中心的计算公式为:
根据上述公式不断迭代求出满足条件的隶属度以及聚类中心。具体的FCM算法步骤如下:
首先,给定一个由N个L维向量组成的数据集X以及所要分得的类别个数C,自定义隶属度矩阵
(1)设定类别的个数C和模糊系数m;
(2)?初始化隶属度矩阵且满足公式(2)中的归一化条件;
(3)根据公式(5)计算聚类中心;
(4)根据公式(4)更新隶属度矩阵;
(5)根据矩阵范数比较迭代的隶属度矩阵,如果,迭代停止,否则返回(3)。
二 MATLAB实现
根据上述公式及步骤,采用MATLAB实现,具体如下:
(1)选取UCI数据库中的wine数据实现,代码:
clear all clc; %% 导入数据 load wine.txt; cluster_n=6; data = wine; data(:,1) = []; data(:,size(data,2)) = []; data_n = size(data, 1); %数据的个数 in_n = size(data, 2);% 数据维数 %% 定义变量 default_options = [10; % 隶属度函数的幂次方 300; % 最大迭代次数 1e-5; %步长 1]; % 判定条件 options = default_options; expo = options(1); % Exponent for U 隶属度函数的幂次方 max_iter = options(2); % Max. iteration 最大迭代次数 min_impro = options(3); % Min. improvement 最小进化步长 display = options(4); % Display info or not 显示信息与否 obj_fcn = zeros(max_iter, 1); % Array for objective function tic %% 初始化隶属度矩阵并归一 U = rand(cluster_n, data_n); %rand()产生随机矩阵 col_sum = sum(U); U = U./col_sum(ones(cluster_n, 1), :);%归一化 %% 开始迭代 for i = 1:max_iter,%迭代次数控制 tic mf = U.^expo; % MF matrix after exponential modification center = mf*data./((ones(size(data, 2), 1)*sum((mf‘)))‘); % 建立新的聚类中心 out = zeros(size(center, 1), size(data, 1)); %每个点到每个中心的距离,行数为中心数 if size(center, 2) > 1,%样本的维数大于一执行以下程序 for k = 1:size(center, 1),%给K赋值 abc = ((data-ones(size(data,1),1) * center(k,:)).^2)‘; out(k, :) = sqrt(sum(abc));%得到欧氏距离 end else % 1-D data for k = 1:size(center, 1), out(k, :) = abs(center(k)-data)‘; end end obj_fcn(i) = sum(sum((out.^2).*mf)); % 目标函数 tmp = out.^(-2/(expo-1)); % 根据新的隶属度矩阵求解公式求出 U= tmp./(ones(cluster_n, 1)*sum(tmp)); % 新的隶属度矩阵 if display, fprintf(‘Iteration count = %d, obj. fcn = %f\n‘, i, obj_fcn(i)); %输出迭代次数和函数的结果 end % check termination condition if i > 1, %进化步长控制 if abs(obj_fcn(i) - obj_fcn(i-1)) < min_impro, break; end, end toc end toc plot(U(1,:),‘-ro‘); grid on hold on plot(U(2,:),‘-g*‘); plot(U(3,:),‘-b+‘); ylabel(‘Membership degrees‘) legend(‘FCM1‘,‘FCM2‘,‘FCM3‘,‘location‘,‘northeast‘); toc
结果如下:
(2)选取一张MRI图像,进行图像分割,代码如下:
clear all clc; a=imread(‘MRI.jpg‘); I=imnoise(a,‘salt & pepper‘,0.05); figure(1); imshow(I);title(‘加噪图像‘); [height,width,c]=size(a); if c~=1 a=rgb2gray(a); end a=double(a); [row,column]=size(a); data = a(:); data_n = size(data,1); cluster_num = 4; default_options = [2.0; % 隶属度函数的幂次方 300; % 最大迭代次数 1e-5; %步长 1]; % 判定条件 options = default_options; expo = options(1); % Exponent for U 隶属度函数的幂次方 max_iter = options(2); % Max. iteration 最大迭代次数 min_impro = options(3); % Min. improvement 最小进化步长 display = options(4); % Display info or not 显示信息与否 obj_fcn = zeros(max_iter, 1); % Array for objective function membership = zeros(height,width,cluster_num); center = zeros(cluster_num,1); tic % 初始化隶属度并归一 for i=1:height for j=1:width member_sum=0; for k=1:cluster_num membership(i,j,k)=rand(); member_sum = member_sum + membership(i,j,k); end for p =1:cluster_num membership(i,j,p) = membership(i,j,p) / member_sum; end end end tic for i = 1:max_iter,%迭代次数控制 mf = membership.^expo; %%%%%%%%建立聚类中心 for m = 1:cluster_num to = 0; tp =0; for j = 1:height for t = 1:width to = to + membership(j,t,m) * a(j,t); tp = tp + membership(j,t,m); end end center(m,1) = to / tp; end %%%%%%%得到欧式距离以及目标函数 out = zeros(height,width,cluster_num); for m =1:height for j =1:width for t = 1:cluster_num out(m,j,t) = abs(a(m,j) - center(t,1)); obj_fcn(i) = obj_fcn(i) + (membership(m,j,t).^expo) * (out(m,j,t).^2); end end end for m = 1:height for j = 1:width for r = 1:cluster_num top =0; for t = 1:cluster_num top = top + (out(m,j,r) / out(m,j,t)).^(expo - 1); end membership(m,j,r) = 1 / top; end end end %%%%%%归一化隶属度 for m=1:height for j = 1:width member_sum = 0; for k = 1:cluster_num member_sum = member_sum + membership(m,j,k); end for p = 1:cluster_num membership(m,j,p) = membership(m,j,p) / member_sum; end end end if display, fprintf(‘Iteration count = %d, obj. fcn = %f\n‘, i, obj_fcn(i)); %输出迭代次数和函数的结果 end % check termination condition if i > 1, %进化步长控制 if abs(obj_fcn(i) - obj_fcn(i-1)) < min_impro, break; end, end end toc %%%%%%证得如自定义图像中的MCR不能计算,故在此继续尝试直接用newing和A相比较 A = ones(height,width,1); for i = 1:height for j = 1:width if (fix(a(i,j) / 85) == 1) A(i,j,1) = 2; end if (fix(a(i,j) / 85) == 2) A(i,j,1) = 3; end if (fix(a(i,j,1) / 85) == 3) A(i,j,1) = 4; end end end A = reshape(A,1,data_n); newing = zeros(row,column); for i=1:row for j=1:column maxmembership=membership(i,j,1); index=1; for k=2:cluster_num if(membership(i,j,k)>maxmembership) maxmembership=membership(i,j,k); index=k; end end newing(i,j) = round(255 * (1-(index-1)/(cluster_num-1))); end end B = reshape(newing,1,data_n); b = fix((max(B) - B(1,1)) / cluster_num); for i = 2:data_n if B(1,i) == B(1,1) B(1,i) = 1; elseif (fix(B(1,i) / b) == 2) B(1,i) = 2; elseif (fix(B(1,i) / b) == 3) B(1,i) = 3; else B(1,i) = 4; end end B(1,1) = 1; sum = 0; for i = 1:data_n if ( A(1,i) ~= B(1,i)) sum = sum + 1; end end MCR = sum / data_n; fprintf(‘MCR = %d\n‘,MCR); S = 0; for i = 1:data_n S = S + (A(1,i) - B(1,i)).^2; end RMS = sqrt(S / (data_n * (data_n -1))); fprintf(‘RMS = %d\n‘,RMS); figure(2); imshow((uint8(newing))); title(‘FCM分割后的图像‘);
结果如下:
(3)还可以自定义图像进行测试,代码如下:
clear all clc; image = zeros(96,96); for i = 1:58 for j = 49:96 image(i,j) = 75; end end for i = 59:77 for j = 1:96 image(i,j) = 50; end end for i = 78:96 for j = 1:48 image(i,j) = 50; end end for i = 78:96 for j = 49:96 image(i,j) = 25; end end a = image; noise = uint8(image); noise = imnoise(noise,‘gaussian‘,100 / (255 * 255)); figure(1); imagesc(noise); colormap(gray); title(‘加噪图像‘); [height,width,c]=size(a); if c~=1 a=rgb2gray(a); end a=double(a); [row,column]=size(a); data = a(:); data_n = size(data,1); cluster_num = 4; default_options = [10; % 隶属度函数的幂次方 300; % 最大迭代次数 1e-5; %步长 1]; % 判定条件 options = default_options; expo = options(1); % Exponent for U 隶属度函数的幂次方 max_iter = options(2); % Max. iteration 最大迭代次数 min_impro = options(3); % Min. improvement 最小进化步长 display = options(4); % Display info or not 显示信息与否 obj_fcn = zeros(max_iter, 1); % Array for objective function membership = zeros(height,width,cluster_num); center = zeros(cluster_num,1); tic % 初始化隶属度并归一 for i=1:height for j=1:width member_sum=0; for k=1:cluster_num membership(i,j,k)=rand(); member_sum = member_sum + membership(i,j,k); end for p =1:cluster_num membership(i,j,p) = membership(i,j,p) / member_sum; end end end tic for i = 1:max_iter,%迭代次数控制 mf = membership.^expo; %%%%%%%%建立聚类中心 for m = 1:cluster_num to = 0; tp =0; for j = 1:height for t = 1:width to = to + membership(j,t,m) * a(j,t); tp = tp + membership(j,t,m); end end center(m,1) = to / tp; end %%%%%%%得到欧式距离以及目标函数 out = zeros(height,width,cluster_num); for m =1:height for j =1:width for t = 1:cluster_num out(m,j,t) = abs(a(m,j) - center(t,1)); obj_fcn(i) = obj_fcn(i) + (membership(m,j,t).^expo) * (out(m,j,t).^2); end end end for m = 1:height for j = 1:width for r = 1:cluster_num top =0; for t = 1:cluster_num top = top + (out(m,j,r) / out(m,j,t)).^(expo - 1); end membership(m,j,r) = 1 / top; end end end %%%%%%归一化隶属度 for m=1:height for j = 1:width member_sum = 0; for k = 1:cluster_num member_sum = member_sum + membership(m,j,k); end for p = 1:cluster_num membership(m,j,p) = membership(m,j,p) / member_sum; end end end if display, fprintf(‘Iteration count = %d, obj. fcn = %f\n‘, i, obj_fcn(i)); %输出迭代次数和函数的结果 end % check termination condition if i > 1, %进化步长控制 if abs(obj_fcn(i) - obj_fcn(i-1)) < min_impro, break; end, end end toc A = ones(height,width,1); for i = 1:height for j = 1:width if (a(i,j) == 75) A(i,j,1) = 2; end if (a(i,j) == 50) A(i,j,1) = 3; end if (a(i,j,1) == 25) A(i,j,1) = 4; end end end A = reshape(A,1,data_n); B = ones(row,column,1); for i=1:row for j=1:column maxmembership=membership(i,j,1); for k=2:cluster_num if(membership(i,j,k)>maxmembership) maxmembership = membership(i,j,k); B(i,j,1)=k; end end end end B = reshape(B,1,data_n); t = MCR(A,B); %输出图像 newing = zeros(row,column); for i=1:row for j=1:column maxmembership=membership(i,j,1); index=1; for k=2:cluster_num if(membership(i,j,k)>maxmembership) maxmembership=membership(i,j,k); index=k; end end newing(i,j) = round(255 * (1-(index-1)/(cluster_num-1))); end end figure(2); imagesc(uint8(newing)); colormap(gray); title(‘FCM分割后的图像‘);
结果如下:
结果分析:
综上所示,计算得出误分类率为38.9%,所以说此算法还是准确率还有待提高。且当数据的特征复杂集合较大时,算法的实时性不是很可观;与许多聚类算法一样,FCM选择欧氏距离作为样本点与相应聚类中心之间的非相似性指标,致使算法趋向于发现具有相近尺度和密度的球星簇。
今天就先到这儿,之后将进一步对算法进行优化~
标签:
原文地址:http://www.cnblogs.com/ybjourney/p/4735335.html