标签:
题目大意:有N个点,M条有向边。现在要求你以1为根,构造出一棵最小生成树,问这棵最小生成树能否被构造出来,如果可以,总权值是多少
解题思路:朱刘算法的裸题,我只想吐槽一下POJ,用的是double型的,输出时是%.2lf,结果是WA
换成了%.2f就A了。。这什么情况,白白花费了1个多小时去调错。。
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
#define N 110
#define M 10010
#define esp 1e-5
const double INF = 1e9;
struct Node {
int x, y;
}node[N];
struct Edge{
int from, to;
double dis;
}E[M];
int n, m, tot;
int pre[N], id[N], vis[N];
double in[N];
double distance(int u, int v) {
int x = node[u].x - node[v].x;
int y = node[u].y - node[v].y;
return sqrt(1.0 * x * x + 1.0 * y * y);
}
void AddEdge(int u, int v) {
E[tot].from = u;
E[tot].to = v;
E[tot].dis = distance(u, v);
tot++;
}
void init() {
for (int i = 0; i < n; i++)
scanf("%d%d", &node[i].x, &node[i].y);
tot = 0;
int u, v;
for (int i = 0; i < m; i++) {
scanf("%d%d", &u, &v);
u--; v--;
AddEdge(u, v);
}
}
double ans;
bool Directed_MST(int root) {
ans = 0;
int u, v, tmp;
while (1) {
for (int i = 0; i < n; i++)
in[i] = INF;
for (int i = 0; i < m; i++) {
u = E[i].from;
v = E[i].to;
if (u != v && E[i].dis - in[v] < esp) {
in[v] = E[i].dis;
pre[v] = u;
}
}
for (int i = 0; i < n; i++) {
if (i == root)
continue;
if (in[i] == INF)
return false;
}
int subnode = 0;
memset(vis, -1, sizeof(vis));
memset(id, -1, sizeof(id));
in[root] = 0;
for (int i = 0; i < n; i++) {
ans += in[i];
tmp = i;
while (vis[tmp] != i && id[tmp] == -1 && tmp != root) {
vis[tmp] = i;
tmp = pre[tmp];
}
if (tmp != root && id[tmp] == -1) {
u = pre[tmp];
while (u != tmp) {
id[u] = subnode;
u = pre[u];
}
id[tmp] = subnode++;
}
}
if (subnode == 0)
return true;
for (int i = 0; i < n; i++)
if (id[i] == -1)
id[i] = subnode++;
for (int i = 0; i < m; i++) {
tmp = E[i].to;
E[i].from = id[E[i].from];
E[i].to = id[E[i].to];
if (E[i].from != E[i].to)
E[i].dis -= in[tmp];
}
root = id[root];
n = subnode;
}
}
void solve() {
if (!Directed_MST(0)) {
printf("poor snoopy\n");
}
else
printf("%.2f\n", ans);
}
int main() {
while (~scanf("%d%d", &n, &m)) {
init();
solve();
}
return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
POJ - 3164 Command Network(朱刘算法)
标签:
原文地址:http://blog.csdn.net/l123012013048/article/details/47710771