问题描述:求一个数组的最大k个数,如,{1,5,8,9,11,2,3}的最大三个数应该是,8,9,11
问题分析:
1.解法一:最直观的做法是将数组从大到小排序,然后选出其中最大的K个数,但是这样的解法,复杂度是O(logn*n),但是有时候并不需要排序,用简单的选择排序,或者是冒泡排序,那么就K轮的交换或者是选择,就可以得出结论,复杂度是O(n*k),当K很大的时候排序可能是更好的解法,当K小的时候用选择或者是冒泡效率会更加的高。但是这都是会对前K个数进行排序,所以效率不高,当K很大的时候,以上两种方法效率都不是很高。
2.解法二:不对前K个数进行排序,回忆快排的算法中,那个partition函数,就是随机选择数组中的一个数,把比这个数大的数,放在数组的前面,把比这个数小的数放在数组的
后面,这时想如果找出的随机数,最终位置就是K,那么最大的K个数就找出来了,沿着这个思路思考问题,但是这个函数,最后的索引位置并不一定是K,可能比K大也可能比K小,我们把找出的数组分成两部分sa,sb,sa是大的部分,sb是小的部分,如果sa的长度等于K的话,那么直接返回就是最终结果,如果sa的长度要比K大的话,那么以sa为新的数组,从sa中找出K个最大的数,这时候就把原始数据集减少到的sa,如果sa的长度比K小的话,加入sa中有m个元素,那么m个元素算作是K中元素的一部分,再从sb中找到,k-m个最大的元素,组合起来就是最终的结果,那么这时把问题简化成从sb中找k-m个最大的元素,所以总体来说这是一个递归的过程,虽然复杂大也是O(n*logn)但是,每一次数据量都会减少所以会更加的快。
3.解法三:是利用堆排序,建立一个K阶最大堆,然后数据一个个插入队当中,那么插入队的时间复杂度是O(logK),适合数据量比较大的时候,用堆的效果更加好。
这里给出解法二的代码供大家参考:
public class Main { private static void swap(int[] nums,int index1,int index2){ int temp=nums[index1]; nums[index1]=nums[index2]; nums[index2]=temp; } public static int partition(int[] nums,int start,int end){ int index=new Random().nextInt(nums.length); int num=nums[index]; swap(nums, index, 0); int i=start; int j=end; while(i<j){ while(i<j&&nums[j]<=num){ j--; } if(i<j){ nums[i++]=nums[j]; } while(i<j&&nums[i]>num){ i++; } if(i<j){ nums[j--]=nums[i]; } } nums[i]=num; return i; } public static int partition(int[] nums){ return partition(nums, 0, nums.length-1); } public static int[] findKmax(int[] nums,int k,int start,int end){ int index=partition(nums,start,end); int length=index-start+1; int[] tempMax=Arrays.copyOf(nums, length); int[] tempMin=new int[nums.length-length]; System.arraycopy(nums, index+1, tempMin, 0, nums.length-length); if(length>k){ return findKmax(tempMax,k,0,tempMax.length-1); }else if(length==k){ return tempMax; }else{ int[] temp2=new int[k]; System.arraycopy(tempMax, 0, temp2, 0, tempMax.length); int[] temp3=findKmax(tempMin,k-length,0,tempMin.length-1); System.arraycopy(temp3,0, temp2, index+1, temp3.length); return temp2; } } public static int[] findKmax(int[] nums,int k){ return findKmax(nums, k, 0, nums.length-1); } public static void print(int[] nums){ for(int i=0;i<nums.length;i++){ System.out.print(nums[i]+" "); } } public static void main(String[] args) { int[] nums={1,5,8,9,11,2,3}; int[] temp=findKmax(nums, 3); System.out.println("ret:"); print(temp); } }
版权声明:本文为博主原创文章,未经博主允许不得转载。
原文地址:http://blog.csdn.net/sxiaobei/article/details/47754099