标签:
此处共有两段代码:
一、
这段代码比较全面,其中参考了github上的相关源码。可以说功能强大。
//Dijkstra(迪杰斯特拉算法) #include <stdio.h> #include <stdlib.h> #include <string.h> #define MAX 100 // 矩阵最大容量 #define INF 65535 // 最大值65535 #define isLetter(a) ((((a)>='a')&&((a)<='z')) || (((a)>='A')&&((a)<='Z'))) #define LENGTH(a) (sizeof(a)/sizeof(a[0])) // 图的邻接矩阵存储 typedef struct _graph { char vexs[MAX]; // 顶点集合 int vexnum; // 顶点数 int edgnum; // 边数 int matrix[MAX][MAX]; // 邻接矩阵 }Graph, *PGraph; // 边的结构体 typedef struct _EdgeData { char start; // 边的起点 char end; // 边的终点 int weight; // 边的权重 }EData; /* * 返回ch在matrix矩阵中的位置 */ static int get_position(Graph G, char ch) { int i; for(i=0; i<G.vexnum; i++) if(G.vexs[i]==ch) return i; return -1; } /* * 读取一个输入字符 */ static char read_char() { char ch; do { ch = getchar(); } while(!isLetter(ch)); return ch; } /* * 创建图(自己输入) */ Graph* create_graph() { char c1, c2; int v, e; int i, j, weight, p1, p2; Graph* pG; // 输入"顶点数"和"边数" printf("请输入顶点的数目:\n "); scanf("%d", &v); printf("请输入边的数目: \n"); scanf("%d", &e); if ( v < 1 || e < 1 || (e > (v * (v-1)))) { printf("输入有误!!!\n"); return NULL; } if ((pG=(Graph*)malloc(sizeof(Graph))) == NULL ) return NULL; memset(pG, 0, sizeof(Graph)); //初始化 // 初始化"顶点数"和"边数" pG->vexnum = v; pG->edgnum = e; // 初始化"顶点" for (i = 0; i < pG->vexnum; i++) { printf("vertex(%d): ", i); pG->vexs[i] = read_char(); } // 1. 初始化"边"的权值 for (i = 0; i < pG->vexnum; i++) { for (j = 0; j < pG->vexnum; j++) { if (i==j) pG->matrix[i][j] = 0; else pG->matrix[i][j] = INF; } } // 2. 初始化"边"的权值: 根据用户的输入进行初始化 for (i = 0; i < pG->edgnum; i++) { // 读取边的起始顶点,结束顶点,权值 printf("edge(%d):", i); c1 = read_char(); c2 = read_char(); scanf("%d", &weight); p1 = get_position(*pG, c1); p2 = get_position(*pG, c2); if (p1==-1 || p2==-1) { printf("输入有误!!!\n"); free(pG); return NULL; } pG->matrix[p1][p2] = weight; pG->matrix[p2][p1] = weight; } return pG; } /* * 创建图(用已提供的矩阵) */ Graph* create_example_graph() { char vexs[] = {'A', 'B', 'C', 'D', 'E', 'F', 'G'}; int matrix[][9] = { /*A*//*B*//*C*//*D*//*E*//*F*//*G*/ /*A*/ { 0, 12, INF, INF, INF, 16, 14}, /*B*/ { 12, 0, 10, INF, INF, 7, INF}, /*C*/ { INF, 10, 0, 3, 5, 6, INF}, /*D*/ { INF, INF, 3, 0, 4, INF, INF}, /*E*/ { INF, INF, 5, 4, 0, 2, 8}, /*F*/ { 16, 7, 6, INF, 2, 0, 9}, /*G*/ { 14, INF, INF, INF, 8, 9, 0}}; int vlen = LENGTH(vexs); int i, j; Graph* pG; // 输入"顶点数"和"边数" if ((pG=(Graph*)malloc(sizeof(Graph))) == NULL ) return NULL; memset(pG, 0, sizeof(Graph)); // 初始化"顶点数" pG->vexnum = vlen; // 初始化"顶点" for (i = 0; i < pG->vexnum; i++) pG->vexs[i] = vexs[i]; // 初始化"边" for (i = 0; i < pG->vexnum; i++) for (j = 0; j < pG->vexnum; j++) pG->matrix[i][j] = matrix[i][j]; // 统计边的数目 for (i = 0; i < pG->vexnum; i++) for (j = 0; j < pG->vexnum; j++) if (i!=j && pG->matrix[i][j]!=INF) pG->edgnum++; pG->edgnum /= 2; return pG; } /* * 返回顶点v的第一个邻接顶点的索引,失败则返回-1 */ static int first_vertex(Graph G, int v) { int i; if (v<0 || v>(G.vexnum-1)) return -1; for (i = 0; i < G.vexnum; i++) if (G.matrix[v][i]!=0 && G.matrix[v][i]!=INF) return i; return -1; } /* * 返回顶点v相对于w的下一个邻接顶点的索引,失败则返回-1 */ static int next_vertix(Graph G, int v, int w) { int i; if (v<0 || v>(G.vexnum-1) || w<0 || w>(G.vexnum-1)) return -1; for (i = w + 1; i < G.vexnum; i++) if (G.matrix[v][i]!=0 && G.matrix[v][i]!=INF) return i; return -1; } /* * 深度优先搜索遍历图的递归实现 */ static void DFS(Graph G, int i, int *visited) { int w; visited[i] = 1; printf("%c ", G.vexs[i]); // 遍历该顶点的所有邻接顶点。若是没有访问过,那么继续往下走 for (w = first_vertex(G, i); w >= 0; w = next_vertix(G, i, w)) { if (!visited[w]) DFS(G, w, visited); } } /* * 深度优先搜索遍历图 */ void DFSTraverse(Graph G) { int i; int visited[MAX]; // 顶点访问标记 // 初始化所有顶点都没有被访问 for (i = 0; i < G.vexnum; i++) visited[i] = 0; printf("DFS: "); for (i = 0; i < G.vexnum; i++) { //printf("\n== LOOP(%d)\n", i); if (!visited[i]) DFS(G, i, visited); } printf("\n"); } /* * 广度优先搜索(类似于树的层次遍历) */ void BFS(Graph G) { int head = 0; int rear = 0; int queue[MAX]; // 辅组队列 int visited[MAX]; // 顶点访问标记 int i, j, k; for (i = 0; i < G.vexnum; i++) visited[i] = 0; printf("BFS: "); for (i = 0; i < G.vexnum; i++) { if (!visited[i]) { visited[i] = 1; printf("%c ", G.vexs[i]); queue[rear++] = i; // 入队列 } while (head != rear) { j = queue[head++]; // 出队列 for (k = first_vertex(G, j); k >= 0; k = next_vertix(G, j, k)) //k是为访问的邻接顶点 { if (!visited[k]) { visited[k] = 1; printf("%c ", G.vexs[k]); queue[rear++] = k; } } } } printf("\n"); } /* * 打印矩阵队列图 */ void print_graph(Graph G) { int i,j; printf("Martix Graph:\n"); for (i = 0; i < G.vexnum; i++) { for (j = 0; j < G.vexnum; j++) printf("%10d ", G.matrix[i][j]); printf("\n"); } } /* * prim最小生成树 * * 参数说明: * G -- 邻接矩阵图 * start -- 从图中的第start个元素开始,生成最小树 */ void prim(Graph G, int start) { int min,i,j,k,m,n,sum; int index=0; // prim最小树的索引,即prims数组的索引 char prims[MAX]; // prim最小树的结果数组 int weights[MAX]; // 顶点间边的权值 // prim最小生成树中第一个数是"图中第start个顶点",因为是从start开始的。 prims[index++] = G.vexs[start]; // 初始化"顶点的权值数组", // 将每个顶点的权值初始化为"第start个顶点"到"该顶点"的权值。 for (i = 0; i < G.vexnum; i++ ) weights[i] = G.matrix[start][i]; // 将第start个顶点的权值初始化为0。 // 可以理解为"第start个顶点到它自身的距离为0"。 weights[start] = 0; for (i = 0; i < G.vexnum; i++) { // 由于从start开始的,因此不需要再对第start个顶点进行处理。 if(start == i) continue; j = 0; k = 0; min = INF; // 在未被加入到最小生成树的顶点中,找出权值最小的顶点。 while (j < G.vexnum) { // 若weights[j]=0,意味着"第j个节点已经被排序过"(或者说已经加入了最小生成树中)。 if (weights[j] != 0 && weights[j] < min) { min = weights[j]; k = j; } j++; } // 经过上面的处理后,在未被加入到最小生成树的顶点中,权值最小的顶点是第k个顶点。 // 将第k个顶点加入到最小生成树的结果数组中 prims[index++] = G.vexs[k]; // 将"第k个顶点的权值"标记为0,意味着第k个顶点已经排序过了(或者说已经加入了最小树结果中)。 weights[k] = 0; // 当第k个顶点被加入到最小生成树的结果数组中之后,更新其它顶点的权值。 for (j = 0 ; j < G.vexnum; j++) { // 当第j个节点没有被处理,并且需要更新时才被更新。 if (weights[j] != 0 && G.matrix[k][j] < weights[j]) weights[j] = G.matrix[k][j]; } } // 计算最小生成树的权值 sum = 0; for (i = 1; i < index; i++) { min = INF; // 获取prims[i]在G中的位置 n = get_position(G, prims[i]); // 在vexs[0...i]中,找出到j的权值最小的顶点。 for (j = 0; j < i; j++) { m = get_position(G, prims[j]); if (G.matrix[m][n]<min) min = G.matrix[m][n]; } sum += min; } // 打印最小生成树 printf("PRIM(%c)=%d: ", G.vexs[start], sum); for (i = 0; i < index; i++) printf("%c ", prims[i]); printf("\n"); } /* * 获取图中的边 */ EData* get_edges(Graph G) { int i,j; int index=0; EData *edges; edges = (EData*)malloc(G.edgnum*sizeof(EData)); for (i=0;i < G.vexnum;i++) { for (j=i+1;j < G.vexnum;j++) { if (G.matrix[i][j]!=INF) { edges[index].start = G.vexs[i]; edges[index].end = G.vexs[j]; edges[index].weight = G.matrix[i][j]; index++; } } } return edges; } /* * 对边按照权值大小进行排序(由小到大) */ void sorted_edges(EData* edges, int elen) { int i,j; for (i=0; i<elen; i++) { for (j=i+1; j<elen; j++) { if (edges[i].weight > edges[j].weight) { // 交换"第i条边"和"第j条边" EData tmp = edges[i]; edges[i] = edges[j]; edges[j] = tmp; } } } } /* * 获取i的终点 */ int get_end(int vends[], int i) { while (vends[i] != 0) i = vends[i]; return i; } /* * 克鲁斯卡尔(Kruskal)最小生成树 */ void kruskal(Graph G) { int i,m,n,p1,p2; int length; int index = 0; // rets数组的索引 int vends[MAX]={0}; // 用于保存"已有最小生成树"中每个顶点在该最小树中的终点。 EData rets[MAX]; // 结果数组,保存kruskal最小生成树的边 EData *edges; // 图对应的所有边 // 获取"图中所有的边" edges = get_edges(G); // 将边按照"权"的大小进行排序(从小到大) sorted_edges(edges, G.edgnum); for (i=0; i<G.edgnum; i++) { p1 = get_position(G, edges[i].start); // 获取第i条边的"起点"的序号 p2 = get_position(G, edges[i].end); // 获取第i条边的"终点"的序号 m = get_end(vends, p1); // 获取p1在"已有的最小生成树"中的终点 n = get_end(vends, p2); // 获取p2在"已有的最小生成树"中的终点 // 如果m!=n,意味着"边i"与"已经添加到最小生成树中的顶点"没有形成环路 if (m != n) { vends[m] = n; // 设置m在"已有的最小生成树"中的终点为n rets[index++] = edges[i]; // 保存结果 } } free(edges); // 统计并打印"kruskal最小生成树"的信息 length = 0; for (i = 0; i < index; i++) length += rets[i].weight; printf("Kruskal=%d: ", length); for (i = 0; i < index; i++) printf("(%c,%c) ", rets[i].start, rets[i].end); printf("\n"); } /* * Dijkstra最短路径。 * 即,统计图(G)中"顶点vs"到其它各个顶点的最短路径。 * * 参数说明: * G -- 图 * vs -- 起始顶点(start vertex)。即计算"顶点vs"到其它顶点的最短路径。 * prev -- 前驱顶点数组。即,prev[i]的值是"顶点vs"到"顶点i"的最短路径所经历的全部顶点中,位于"顶点i"之前的那个顶点。 * dist -- 长度数组。即,dist[i]是"顶点vs"到"顶点i"的最短路径的长度。 */ void dijkstra(Graph G, int vs, int prev[], int dist[]) { int i,j,k; int min; int tmp; int flag[MAX]; // flag[i]=1表示"顶点vs"到"顶点i"的最短路径已成功获取。 // 初始化 for (i = 0; i < G.vexnum; i++) { flag[i] = 0; // 顶点i的最短路径还没获取到。 prev[i] = 0; // 顶点i的前驱顶点为0。 dist[i] = G.matrix[vs][i];// 顶点i的最短路径为"顶点vs"到"顶点i"的权。 } // 对"顶点vs"自身进行初始化 flag[vs] = 1; dist[vs] = 0; // 遍历G.vexnum-1次;每次找出一个顶点的最短路径。 for (i = 1; i < G.vexnum; i++) { // 寻找当前最小的路径; // 即,在未获取最短路径的顶点中,找到离vs最近的顶点(k)。 min = INF; for (j = 0; j < G.vexnum; j++) { if (flag[j]==0 && dist[j]<min) { min = dist[j]; k = j; } } // 标记"顶点k"为已经获取到最短路径 flag[k] = 1; // 修正当前最短路径和前驱顶点 // 即,当已经"顶点k的最短路径"之后,更新"未获取最短路径的顶点的最短路径和前驱顶点"。 for (j = 0; j < G.vexnum; j++) { tmp = (G.matrix[k][j]==INF ? INF : (min + G.matrix[k][j])); // 防止溢出 if (flag[j] == 0 && (tmp < dist[j]) ) { dist[j] = tmp; prev[j] = k; } } } // 打印dijkstra最短路径的结果 printf("dijkstra(%c): \n", G.vexs[vs]); for (i = 0; i < G.vexnum; i++) printf(" shortest(%c, %c)=%d\n", G.vexs[vs], G.vexs[i], dist[i]); } int main() { int prev[MAX] = {0}; int dist[MAX] = {0}; Graph* pG; // 自定义"图"(输入矩阵队列) //pG = create_graph(); // 采用已有的"图" pG = create_example_graph(); print_graph(*pG); // 打印图 //DFSTraverse(*pG); // 深度优先遍历 //BFS(*pG); // 广度优先遍历 //prim(*pG, 0); // prim算法生成最小生成树 //kruskal(*pG); // kruskal算法生成最小生成树 // dijkstra算法获取"第4个顶点"到其它各个顶点的最短距离 dijkstra(*pG, 3, prev, dist); return 0; }
结果图:
二、
这段比较简单,相对来说好理解些。
#include <stdio.h> #include <stdlib.h> #define MAX 1000000 int arcs[10][10];//邻接矩阵 int D[10];//保存最短路径长度 int p[10][10];//路径 int final[10];//若final[i] = 1则说明 顶点vi已在集合S中 int n = 0;//顶点个数 int v0 = 0;//源点 int v,w; void ShortestPath_DIJ() { int i = 0, min = 0; for (v = 0; v < n; v++) //循环 初始化 { final[v] = 0; D[v] = arcs[v0][v]; for (w = 0; w < n; w++) p[v][w] = 0;//设空路径 if (D[v] < MAX) {p[v][v0] = 1; p[v][v] = 1;} } D[v0] = 0; final[v0]=0; //初始化 v0顶点属于集合S //开始主循环 每次求得v0到某个顶点v的最短路径 并加v到集合S中 for (i = 1; i < n; i++) { min = MAX; for (w = 0; w < n; w++) { //我认为的核心过程--选点 if (!final[w]) //如果w顶点在V-S中 { //这个过程最终选出的点 应该是选出当前V-S中与S有关联边 //且权值最小的顶点 书上描述为 当前离V0最近的点 if (D[w] < min) {v = w; min = D[w];} } } final[v] = 1; //选出该点后加入到合集S中 for (w = 0; w < n; w++)//更新当前最短路径和距离 { /*在此循环中 v为当前刚选入集合S中的点 则以点V为中间点 考察 d0v+dvw 是否小于 D[w] 如果小于 则更新 比如加进点 3 则若要考察 D[5] 是否要更新 就 判断 d(v0-v3) + d(v3-v5) 的和是否小于D[5] */ if (!final[w] && (min+arcs[v][w]<D[w])) { D[w] = min + arcs[v][w]; // p[w] = p[v]; p[w][w] = 1; //p[w] = p[v] + [w] } } } } int main() { int i, j; scanf("%d", &n); //顶点个数 for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { scanf("%d",&arcs[i][j]); //用来存储邻接矩阵 } } ShortestPath_DIJ(); for (i = 0; i < n; i++) printf("D[%d] = %d\n",i,D[i]); return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。
数据结构之---C语言实现最短路径之Dijkstra(迪杰斯特拉)算法
标签:
原文地址:http://blog.csdn.net/u012965373/article/details/47758775