码迷,mamicode.com
首页 > 编程语言 > 详细

梯度下降算法 (转)

时间:2015-08-19 13:01:00      阅读:419      评论:0      收藏:0      [点我收藏+]

标签:

一步了解

 

常见的梯度下降法主要有两种:(1)批量梯度下降法  (2)随机梯度下降法

 

为预测值技术分享,要拟合的函数设为技术分享,那么误差准则函数

 

                  技术分享

 

这是典型的线性回归问题,现在的目的是使得这个误差准则函数的值最小化,可以用如下两种梯度下降法。

 

(1)批量梯度下降法

 

 批量梯度下降法需要把技术分享个样本全部带入计算,迭代一次计算量为技术分享,先对误差准则函数求偏导

 

                            技术分享

 

        所以进一步得到批量梯度下降的迭代式为

 

 

                 技术分享

 

 

 

        可以看出批量梯度下降法得到的是一个全局最优解,但是每迭代一步要用到训练集所有的数据,如果技术分享

    很大那么计算量会很大,相应速度会很慢。所以针对这种不足,又引入了另一种方法:随机梯度下降法。

 

(2)随机梯度下降法

 

    上面的批量梯度下降法是将所有的样本都带入计算,而随机梯度下降法每次迭代是带入单个样本,迭代

,当样本数总数技术分享很大的时候,随机梯度下降法迭代一次的速度要远远小于梯度下降

代公式如下

             技术分享

 

    可以看出随机梯度下降法是最小化单个样本的误差准则函数,虽然每次迭代误差准则函数都不一定是向

    着全局最优方向,但是大的整体方向是向着全局最优方向的,最终得到的结果往往在全局最优解附近。

 

    对于上述线性回归问题,来分析一下这个误差准则函数的性质,首先对技术分享求二阶偏导数,得到

 

             技术分享

即得到Hessian矩阵技术分享,中间的技术分享是一个单位矩阵且正定,所以Hessian矩阵正定。进而推出

误差准则函数技术分享是单峰函数,那么通过梯度下降法得到的最优解也就是全局最优解。当然如果一个函数有

多个峰,那么通过梯度下降得到的可能不是全局最优解。

 

      其实梯度下降法,在使用的时候无非是考虑到两个方面:一是方向,二是步长。方向决定是否走在最优化的道

路上,而步长决定了要多久才能到达最优的地方。对于第一方面,就是求梯度,多元函数求相应变量的偏导数;

回震荡,所以步长选择比较关键。

梯度下降算法 (转)

标签:

原文地址:http://www.cnblogs.com/wft1990/p/4741800.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!