TSP问题最简单的求解方法是枚举法。它的解是多维的、多局部极值的、趋于无穷大的复杂解的空间,搜索空间是n个点的所有排列的集合,大小为(n-1)!。可以形象地把解空间看成是一个无穷大的丘陵地带,各山峰或山谷的高度即是问题的极值。求解TSP,则是在此不能穷尽的丘陵地带中攀登以达到山顶或谷底的过程。
这一篇将用遗传算法解决TSP问题。
1)评价。这个评价算法应该比较简单了,就是找计算总距离,小的为优。目标函数转化为适应度函数可以取倒数。
2)突变。为了防止重复访问,不能随机的进行突变。因为每个城市只能访问一次,我们只需要任意的交换两个城市即可。
上一行是突变之前,下面一行是突变之后的。
3)交叉。这个操作是个比较关键的步骤,怎样交叉才能才能父母的优秀基因呢?对于TSP问题,我们要找的是一个最优的排列,其中排列的顺序应该是最重要的。
因此在交叉的时候,分别随机的取 父母的部分序列,要保持原有的顺序。
Parents
先随机的选取 Parent1 的 一部分,例如 678 部分,。然后把剩下的城市 安装 Parent2 中的顺序,遗传下去。
Chlid
其它基本按照遗传算法的框架来就行了
// TSP.cpp : 定义控制台应用程序的入口点。 // #include "stdafx.h" #include<iostream> //#include <stdio.h> #include <time.h> //#include <stdlib.h> using namespace std; #define POPSIZE 200 //种群总数 #define rdint(i)(rand()%(int)(i)) #define rdft()((float)rdint(16384)/(16383.0)) typedef unsigned char BYTE; //31个城市的坐标 int city[31][2] = { { 1304, 2312 }, 3639, 1315, 4177, 2244, 3712, 1399, 3488, 1535, 3326, 1556, 3238, 1229, 4196, 1004, 4312, 790, 4386, 570, 3007, 1970, 2562, 1756, 2788, 1491, 2381, 1676, 1332, 695, 3715, 1678, 3918, 2179, 4061, 2370, 3780, 2212, 3676, 2578, 4029, 2838, 4263, 2931, 3429, 1908, 3507, 2367, 3394, 2643, 3439, 3201, 2935, 3240, 3140, 3550, 2545, 2357, 2778, 2826, 2370, 2975 }; int* my_unrepeat_rand(int L, int H) { const int LEN = H - L + 1; //int n[LEN]; int *n = new int[LEN]; for (int i = 0; i < LEN; ++i) { n[i] = L + i; } for (int j = LEN; j > 0; --j) { int m = j*rand() /(RAND_MAX + 1.0); int temp = n[m]; n[m] = n[j - 1]; n[j - 1] = temp; } return n; } class Chromosome { friend class Population; public: static const int length = 31; private: BYTE gene[length]; double fitness; double distance; public: void initial_chromosome()//初始化染色体 { distance = 0; fitness = 0; int*b = my_unrepeat_rand(0, length - 1); for (int i = 0; i < length; i++) gene[i] = b[i]; delete[]b; } BYTE*get_gene() { return this->gene; } double get_distance() { return distance; } void calculate_distance()//计算适应度,这里直接取总距离,越小越好 { distance = 0; for (int i = 0; i < length - 1; i++) { distance += sqrt(pow(double(city[gene[i]][0] - city[gene[i + 1]][0]), double(2)) + pow(double(city[gene[i]][1] - city[gene[i + 1]][1]), double(2))); } distance += sqrt(pow(double(city[gene[0]][0] - city[gene[length - 1]][0]), double(2)) + pow(double(city[gene[0]][1] - city[gene[length - 1]][1]), double(2))); } pair<Chromosome, Chromosome> cross(Chromosome p1)//交叉操作,选中区间的基因不改变,孩子基因的其他位置的基因从配偶处获得,要保持顺序 { pair<Chromosome, Chromosome>child; //srand(time(0)); int m = rand() % length ; int n = rand() % length; if (m > n) { int temp = m; m = n; n = temp; } int j = 0,p=0; for (int i = 0; i < length; i++) { if (i >= m&&n >= i) { child.first.gene[i] = gene[i]; child.second.gene[i] = p1.gene[i]; continue; } bool flag = true; while (flag) { flag = false; for (int k = m; k <= n; k++) if (p1.gene[j] == gene[k]) { flag = true; break; } if (flag) j++; } child.first.gene[i] = p1.gene[j]; j++; flag = true; while (flag) { flag = false; for (int k = m; k <= n; k++) if (gene[p] == p1.gene[k]) { flag = true; break; } if (flag) p++; } child.second.gene[i] = gene[p]; p++; } return child; } Chromosome mutation()//变异,选择两个位置交换基因 { int m = rand() % (length - 1); int n = rand() % (length - 1); while (n == m) { n = rand() % (length - 1); } int temp = gene[m]; gene[m] = gene[n]; gene[n] = temp; return *this; } }; class Population { private: Chromosome pop[POPSIZE]; Chromosome best; Chromosome worst; unsigned int Generation; unsigned int maxgeneration; double m_dCrossoverRate;//交叉率0.6 double m_dMutationRate;//变异率0.01 bool elitism;//是否在新一代中保存前一代的最优个体 double m_dTotalFitnessScore; void initial_pop() { for (int i = 0; i < POPSIZE; i++) pop[i].initial_chromosome(); }; public: Population(double pc, double pM, bool ISelitism, unsigned int maxgen) :m_dCrossoverRate(pc), m_dMutationRate(pM), elitism(ISelitism), maxgeneration(maxgen)//构造函数 { Generation = 1; initial_pop(); } void Calcu_fit()//计算适应值 { m_dTotalFitnessScore = 0; for (int i = 0; i < POPSIZE; i++) { pop[i].calculate_distance(); } find_best_worst(); //sort_by_distance(POPSIZE); double mindis = best.distance; double maxdis = worst.distance; for (int i = 0; i < POPSIZE; i++) { pop[i].fitness = 1 - (pop[i].distance - mindis) / (maxdis - mindis + 0.0001);//double(1000) / pop[i].distance;// m_dTotalFitnessScore += pop[i].fitness; } } //fitness(i,1)=(1-((len(i,1)-minlen)/(maxlen-minlen+0.0001))) void sort_by_distance(int k) { if (k == 1) return; for (int i = 0; i < k-1; i++) { if (pop[i].distance < pop[i + 1].distance) { double temp = pop[i].distance; pop[i].distance = pop[i + 1].distance; pop[i + 1].distance = temp; } } sort_by_distance(k - 1); } void find_best_worst() { double mindis = 100000000; double maxdis = 0; for (int i = 0; i < POPSIZE; i++) { if (pop[i].distance > maxdis) { maxdis = pop[i].distance; worst = pop[i]; } if (pop[i].distance < mindis) { mindis = pop[i].distance; best = pop[i]; } } } int RouletteWheelSelection() { double fSlice = rdft() * m_dTotalFitnessScore; double cfTotal = 0.0; for (int i = 0; i<POPSIZE; ++i) { cfTotal += pop[i].fitness; if (cfTotal > fSlice) { return i; } } } void Epoch() { Calcu_fit(); Chromosome new_pop[POPSIZE+1]; int NewBabies = 0; if (elitism) { NewBabies = 1; new_pop[0] = best; } while (NewBabies < POPSIZE) { //select 2 parents int mum = RouletteWheelSelection(); int dad = RouletteWheelSelection(); while (dad == mum) { dad = RouletteWheelSelection(); }pair<Chromosome, Chromosome>child; if (rdft() < m_dCrossoverRate) { child = pop[mum].cross(pop[dad]); } else { child.first = pop[mum]; child.second = pop[dad]; } if (rdft() < m_dMutationRate) { child.first.mutation(); } if (rdft() < m_dMutationRate) { child.second.mutation(); } new_pop[NewBabies]=child.first; new_pop[NewBabies+1] = child.second; NewBabies += 2; } for (int i = 0; i < POPSIZE; i++) pop[i] = new_pop[i]; ++Generation; } Chromosome get_best() { return best; } void run() { while (Generation < maxgeneration) { Epoch(); } } }; int _tmain(int argc, _TCHAR* argv[]) { time_t t; srand((unsigned)time(&t)); Population tsp(0.6,0.1,true,1000); tsp.run(); cout << tsp.get_best().get_distance()<<endl; system("pause"); return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。
原文地址:http://blog.csdn.net/u014568921/article/details/47786275