泛化能力差和过拟合 引起过拟合的原因: 1)过度VC维(模型复杂度高) 2)噪声 3)有限的样本数量N 一个具体实验来看模型复杂度/确定性噪声、随机噪声、样本数量对过拟合的影响 关于确定性噪声 尽量避免过拟合: 1)从简单模型开始:降低模型复杂度 2)data cleaning/data pruni ...
分类:
其他好文 时间:
2017-09-27 00:42:46
阅读次数:
146
在机器学习中,导致overfitting的原因之一是noise,这个noise可以分为两种,即stochastic noise,随机噪声来自数据产生过程,比如测量误差等,和deterministic noise,确定性噪声来自added complexity,即model too complex。这两种类型的造成来源不同,但是对于学习的影响是相似的...
分类:
其他好文 时间:
2015-08-27 16:51:58
阅读次数:
120
本节课主要介绍了关于机器学习中的过拟化问题。作者指出,区别一个专业级玩家和业余爱好者的方法之一就是他们如何处理过拟化问题。通过该课程,我们可以知道样本数据的拟合并不是越高越好,因为噪声的存在将使得过拟化问题的出现。最后简介了处理过拟合的两种方法。...
分类:
其他好文 时间:
2014-11-07 23:29:28
阅读次数:
273