阅读目录 1. 批量梯度下降法BGD 2. 随机梯度下降法SGD 3. 小批量梯度下降法MBGD 4. 总结 在应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练。其实,常用的梯度下降法还具体包含有三种不同的形式,它们也各自有着不同的优缺点。 下面我们以线性回归算法来对三种梯度下降法进 ...
分类:
其他好文 时间:
2021-03-18 14:27:25
阅读次数:
0
文章主要目录如下:1.批量梯度下降法BGD原理讲解2.随机梯度下降法SGD原理讲解3.小批量梯度详解MBGD原理讲解4.具体实例以及三种实现方式代码详解5.三种梯度下降法的总结在应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练。其实,常用的梯度下降法还具体包含有三种不同的形式,它们也各自有着不同的优缺点。下面我们以线性回归算法来对三种梯度下降法进行比较。一般线性回归函数的假设函数为
分类:
其他好文 时间:
2020-11-27 11:55:19
阅读次数:
30
梯度下降和随机梯度下降之间的关键区别: 1、标准梯度下降是在权值更新前对所有样例汇总误差,而随机梯度下降的权值是通过考查某个训练样例来更新的。 2、在标准梯度下降中,权值更新的每一步对多个样例求和,需要更多的计算。 3、标准梯度下降,由于使用真正的梯度,标准梯度下降对于每一次权值更新经常使用比随机梯 ...
分类:
其他好文 时间:
2020-04-06 17:51:21
阅读次数:
101
SGDSolver类简介 Solver类用于网络参数的更新,而SGDSolver类实现了优化方法中的随机梯度下降法(stochastic gradient descent),此外还具备缩放、正则化梯度等功能。caffe中其他的优化方法都是SGDSolver类的派生类,重载了基类的 函数,用于各自计算 ...
分类:
其他好文 时间:
2019-12-19 10:04:52
阅读次数:
96
原理 聚类、高维可视化、数据压缩、特征提取 自组织映射神经网络本质上是一个两层的神经网络,包含输入层和输出层(竞争层)输出层中神经元的个数通常是聚类的个数 训练时采用“竞争学习”方式,每个输入在输出层中找到一个和它最匹配的节点,称为激活节点。紧接着用随机梯度下降法更新激活节点的参数,同时,激活节点临 ...
分类:
其他好文 时间:
2019-11-24 15:45:03
阅读次数:
87
讲授卷积神经网络核心思想、卷积层、池化层、全连接层、网络的训练、反向传播算法、随机梯度下降法、AdaGrad算法、RMSProp算法、AdaDelta算法、Adam算法、迁移学习和fine tune等。 大纲: 卷积神经网络简介 视觉神经网络的核心思想 卷积神经网络的核心思想 卷积运算 卷积层的原理 ...
分类:
其他好文 时间:
2019-10-25 13:37:25
阅读次数:
104
pytorch随机梯度下降法1、梯度、偏微分以及梯度的区别和联系(1)导数是指一元函数对于自变量求导得到的数值,它是一个标量,反映了函数的变化趋势;(2)偏微分是多元函数对各个自变量求导得到的,它反映的是多元函数在各个自变量方向上的变化趋势,也是标量;(3)梯度是一个矢量,是有大小和方向的,其方向是 ...
分类:
其他好文 时间:
2019-09-27 20:53:14
阅读次数:
530
1.了解不同优化器 2.书写优化器代码3.Momentum4.二维优化,随机梯度下降法进行优化实现5.Ada自适应梯度调节法6.RMSProp7.Adam8.PyTorch种优化器选择 梯度下降法: 1.标准梯度下降法:GD每个样本都下降一次,参考当前位置的最陡方向迈进容易得到局部最优,且训练速度慢 ...
分类:
其他好文 时间:
2019-08-18 19:49:45
阅读次数:
94
学习率 learning_rate:表示了每次参数更新的幅度大小。学习率过大,会导致待优化的参数在最 小值附近波动,不收敛;学习率过小,会导致待优化的参数收敛缓慢。 在训练过程中,参数的更新向着损失函数梯度下降的方向。 参数的更新公式为: 𝒘𝒏+𝟏 = 𝒘𝒏 ? 𝒍𝒆𝒂𝒓𝒏𝒊? ...
分类:
其他好文 时间:
2019-06-01 21:17:11
阅读次数:
121
SGD 梯度下降法根据每次更新参数时使用的样本数量分为Stochastic Gradient Descent(随机梯度下降法,SGD)、mini-batch Gradirnt Descent(小批量梯度下降法,mBGD)和Batch Gradient Descent(批量梯度下降法,BGD)三种。通... ...
分类:
其他好文 时间:
2019-04-11 10:41:24
阅读次数:
184