做过图像识别、机器学习或者信息检索相关研究的人都知道,论文的实验部分都要和别人的算法比一比。可怎么比,人多嘴杂,我说我的方法好,你说你的方法好,各做各的总是不行——没规矩不成方圆。于是慢慢的大家就形成了一种约定,用ROC曲线和PR曲线来衡量算法的优劣。关于ROC曲线和PR曲线的详细介绍可参考资料:ROC Analysis and the ROC Convex HullTom Fawcett,An ...
分类:
编程语言 时间:
2015-01-27 00:42:47
阅读次数:
271
转自:http://baike.baidu.com/link?url=_H9luL0R0BSz8Lz7aY1Q_hew3JF1w-Zj_a51ggHFB_VYQljACH01pSU_VJtSGrGJOR1h_du8O0S2ADOzzq9Nqq受试者工作特征曲线 (receiver operating...
分类:
其他好文 时间:
2014-12-31 18:21:15
阅读次数:
214
之前写过一篇blog叫做机器学习实战笔记之非均衡分类问题:http://blog.csdn.net/lu597203933/article/details/38666699其中对Precision和Recall及ROC都有所讲解,其中区别在于Precision,Recall, F-score,
MAP主要用于信息检索,而ROC曲线及其度量指标AUC主要用于分类和识别,ROC的详细介绍见上面的b...
分类:
其他好文 时间:
2014-12-08 14:01:53
阅读次数:
448
ROC(Receiver Operating Characteristic)曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣,对两者的简单介绍见这里。这篇博文简单介绍ROC和AUC的特点,以及更为深入地,讨论如何作出ROC曲线图...
分类:
其他好文 时间:
2014-11-03 22:45:11
阅读次数:
406
ROC曲线指受试者工作特征曲线 / 接收器操作特性曲线(receiver operating characteristic curve), 是反映敏感性和特异性连续变量的综合指标,是用构图法揭示敏感性和特异性的相互关系,它通过将连续变量设定出多个不同的临界值,从而计算出一系列敏感性和特异性,再以敏....
分类:
其他好文 时间:
2014-11-02 16:14:26
阅读次数:
252
题记:
近来关于数据挖掘学习过程中,学习到朴素贝叶斯运算ROC曲线。也是本节实验课题,roc曲线的计算原理以及如果统计TP、FP、TN、FN、TPR、FPR、ROC面积等等。往往运用ROC面积评估模型准确率,一般认为越接近0.5,模型准确率越低,最好状态接近1,完全正确的模型...
分类:
编程语言 时间:
2014-10-30 22:15:38
阅读次数:
492
TPR=TP/P :真正率:判断对的正样本占所有正样本的比例。 Precision=TP/(TP+FP) :判断对的正样本占判断出来的所有正样本的比例FPR=FP/N :负正率:判断错的负样本占所有负样本的比例。 Recall = TP/(TP+FN) = TP/P,就是TPR.ROC曲线:横轴是F...
分类:
其他好文 时间:
2014-10-26 22:29:59
阅读次数:
278
受试者工作特征曲线(receiver operating characteristic curve, 简称ROC曲线),又称为感受性曲线(sensitivity curve)。得此名的原因在于曲线上各点反应着相同的感受性,它们都是对同一信号刺激的反应,只不过是在几种不同的判定标准下所得的结果而已。接...
分类:
其他好文 时间:
2014-10-20 09:48:01
阅读次数:
247
ROC曲线在网上有很多地方都有说ROC曲线对于正负样本比例不敏感,即正负样本比例的变化不会改变ROC曲线。但是对于PR曲线就不一样了。PR曲线会随着正负样本比例的变化而变化。但是没有一个有十分具体和严谨地对此做出过分析和论证(至少我没有找到)。此处记为结论1:结论1:PR曲线会随着正负样本比例的变化...
分类:
其他好文 时间:
2014-07-14 08:24:07
阅读次数:
493