这里以二元分类为例子,给出最基本原理的解释 GBDT 是多棵树的输出预测值的累加 GBDT的树都是 回归树 而不是分类树 分类树 分裂的时候选取使得误差下降最多的分裂 计算的技巧 最终分裂收益按照下面的方式计算,注意圆圈内的部分是固定值 GBDT 二分类 GBDT在实现中可以完全复用上面的计算方法框...
分类:
其他好文 时间:
2015-03-08 15:29:50
阅读次数:
543
起源:决策树切分数据集决策树每次决策时,按照一定规则切分数据集,并将切分后的小数据集递归处理。这样的处理方式给了线性回归处理非线性数据一个启发。能不能先将类似特征的数据切成一小部分,再将这一小部分放大处理,使用线性的方法增加准确率呢?Part I: 树的枝与叶枝:二叉 or 多叉? 在AdaBoos...
分类:
其他好文 时间:
2015-03-02 00:54:58
阅读次数:
229
CART分类回归树算法
与上次文章中提到的ID3算法和C4.5算法类似,CART算法也是一种决策树分类算法。CART分类回归树算法的本质也是对数据进行分类的,最终数据的表现形式也是以树形的模式展现的,与ID3,C4.5算法不同的是,他的分类标准所采用的算法不同了。下面列出了其中的一些不同之处:
1、CART最后形成的树是一个二叉树,每个节点会分成2个节点,左孩子节点和右孩子节点,而在ID3和C...
分类:
编程语言 时间:
2015-01-09 21:03:52
阅读次数:
323
Classification And Regression Tree(CART)是一种很重要的机器学习算法,既可以用于创建分类树(Classification Tree),也可以用于创建回归树(Regression Tree),本文介绍了CART用于离散标签分类决策和连续特征回归时的原理。决策树创建过程分析了信息混乱度度量Gini指数、连续和离散特征的特殊处理、连续和离散特征共存时函数的特殊处理和后剪枝;用于回归时则介绍了回归树和模型树的原理、适用场景和创建过程。个人认为,回归树和模型树可以被看做“群落分类...
分类:
编程语言 时间:
2014-12-30 13:40:48
阅读次数:
767
机器学习问题方法总结大类名称关键词有监督分类决策树信息增益分类回归树Gini指数,Χ2统计量,剪枝朴素贝叶斯非参数估计,贝叶斯估计线性判别分析Fishre判别,特征向量求解K最邻近相似度度量:欧氏距离、街区距离、编辑距离、向量夹角、Pearson相关系数逻辑斯谛回归(二值分类)参数估计(极大似然估计...
分类:
其他好文 时间:
2014-11-27 12:34:58
阅读次数:
369
分类回归树算法:CART(Classification And Regression Tree)算法采用一种二分递归分割的技术,将当前的样本集分为两个子样本集,使得生成的的每个非叶子节点都有两个分支。因此,CART算法生成的决策树是结构简洁的二叉树。
分类树两个基本思想:第一个是将训练样本进行递归地划分自变量空间进行建树的想法,第二个想法是用验证数据进行剪枝。
CART与C4.5的...
分类:
其他好文 时间:
2014-09-24 12:33:26
阅读次数:
230
机器学习问题方法总结大类名称关键词有监督分类决策树信息增益分类回归树Gini指数,Χ2统计量,剪枝朴素贝叶斯非参数估计,贝叶斯估计线性判别分析Fishre判别,特征向量求解K最邻近相似度度量:欧氏距离、街区距离、编辑距离、向量夹角、Pearson相关系数逻辑斯谛回归(二值分类)参数估计(极大似然估计...
分类:
其他好文 时间:
2014-08-03 23:05:56
阅读次数:
416