码迷,mamicode.com
首页 >  
搜索关键字:梯度    ( 2016个结果
关于梯度、旋度和散度的直观理解
转载的,这很现实很直接,建议吃饭的时候别看。。。。散度为零,说明是无源场;散度不为零时,则说明是有源场(有正源或负源)若你的场是一个流速场,则该场的散度是该流体在某一点单位时间流出单位体积的净流量. 如果在某点,某场的散度不为零,表示该场在该点有源,例如若电场在某点散度不为零,表示该点有电荷,若流速...
分类:其他好文   时间:2014-07-07 18:50:14    阅读次数:199
OpenCV —— 直方图与匹配
直方图就是对数据进行统计,将统计值组织到一系列事先定义好的bin中。bin中的数值是从数据中计算出来的特征的统计量,这些数据可以是诸如梯度,方向,色彩或任何其他特征。 直方图获得是是数据分布的统计图 直方图的基本数据结构 CvHistogram 创建一个新的直方图 cvCreateHist dims...
分类:其他好文   时间:2014-06-26 16:00:41    阅读次数:274
一种并行随机梯度下降法
Martin A. Zinkevich 等人(Yahoo!Lab)合作的论文 Parallelized Stochastic Gradient Descent 中给出了一种适合于 MapReduce 的并行随机梯度下降法,并给出了相应的收敛性分析。这里忽略理论部分,根据自己的理解给出文中所提并行随机...
分类:其他好文   时间:2014-06-25 22:06:05    阅读次数:417
Spark MLlib之线性回归源码分析
线性回归(Linear Regression)问题属于监督学习(Supervised Learning)范畴,又称分类(Classification)或归纳学习(Inductive Learning);这类分析中训练数据集中给出的数据类标是确定的;机器学习的目标是,对于给定的一个训练数据集,通过不断的分析和学习产生一个联系属性集合和类标集合的分类函数(Classification Function)或预测函数(Prediction Function),这个函数称为分类模型(Classification Mo...
分类:其他好文   时间:2014-06-24 22:58:23    阅读次数:585
一种并行随机梯度下降法
Martin A. Zinkevich 等人(Yahoo!Lab)合作的论文 Parallelized Stochastic Gradient Descent 中给出了一种适合于 MapReduce 的并行随机梯度下降法,并给出了相应的收敛性分析。这里忽略理论部分,根据自己的理解给出文中所提并行随机梯度下降法的描述。...
分类:其他好文   时间:2014-06-24 22:53:45    阅读次数:261
梯度下降深入浅出
深入浅出梯度下降 机器学习...
分类:其他好文   时间:2014-06-24 20:03:02    阅读次数:167
基于矩阵分解的推荐系统应用
使用MATLAB尝试了随机梯度下降的矩阵分解方法,实现了一个比较简单的推荐系统的原理。常用推荐系统的方法有协同过滤, 基于物品内容过滤等等。这次是用的矩阵分解模型属于协同过滤的一种方法,大致原理是通过一定数量的因子来描述各个用户的喜好和各个物品的属性。通过随机梯度下降法分解后得到两个矩阵,一个是用....
分类:其他好文   时间:2014-06-21 07:17:05    阅读次数:346
Horn–Schunck 光流法与其算法理解(gup cuda)
1. 基于Horn-Schunck模型的光流算法 1.1 光流的约束条件 光流 的假设条件认为图像序列,在时间t 的某一像素点与在时间t+1的这一像素点的偏移量保持不变,即 。这就是灰度值守恒假设,通过Taylor展开,就能得到光流的约束条件(OFC): ,其中下标表示图像的梯度。 1.2 Horn...
分类:其他好文   时间:2014-06-20 23:36:48    阅读次数:639
一种利用 Cumulative Penalty 训练 L1 正则 Log-linear 模型的随机梯度下降法
Log-Linear 模型(也叫做最大熵模型)是 NLP 领域中使用最为广泛的模型之一,其训练常采用最大似然准则,且为防止过拟合,往往在目标函数中加入(可以产生稀疏性的) L1 正则。但对于这种带 L1 正则的最大熵模型,直接采用标准的随机梯度下降法(SGD)会出现效率不高和难以真正产生稀疏性等问题。本文为阅读论文 Stochastic Gradient Descent Training for L1-regularized Log-linear Models with Cumulative Penalty...
分类:其他好文   时间:2014-06-19 12:01:04    阅读次数:286
一种并行随机梯度下降法
本文是读完 Jeffrey Dean, Greg S. Corrado 等人的文章 Large Scale Distributed Deep Networks (2012) 后的一则读书笔记,重点介绍在 Google 的软件框架 DistBelief 下设计的一种用来训练大规模深度神经网络的随机梯度下降法 — Downpour SGD,该方法通过分布式地部署多个模型副本和一个“参数服务器”,同时实现了模型并行和数据并行,且对机器失效问题具有很好的容错性。结合 Adagrad 自适应学习率使用,对非凸优化问题...
分类:其他好文   时间:2014-06-18 00:55:39    阅读次数:433
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!