最近学习了一种叫做 Factorization Machines(简称 FM)的通用算法,它可对任意的实值向量进行预测。其主要优点包括: 1) 可用于高度稀疏数据场景; 2) 具有线性的计算复杂度。本文将对 FM 框架进行简单介绍,并对其训练算法 — 随机梯度下降(SGD)法和交替最小二乘(ALS)法进行详细推导。...
分类:
编程语言 时间:
2014-10-28 12:23:27
阅读次数:
342
最近学习了一种叫做 Factorization Machines(简称 FM)的通用算法,它可对任意的实值向量进行预测。其主要优点包括: 1) 可用于高度稀疏数据场景; 2) 具有线性的计算复杂度。本文将对 FM 框架进行简单介绍,并对其训练算法 — 随机梯度下降(SGD)法和交替最小二乘(ALS)法进行详细推导。...
分类:
系统相关 时间:
2014-10-28 12:22:05
阅读次数:
335
最近学习了一种叫做 Factorization Machines(简称 FM)的通用算法,它可对任意的实值向量进行预测。其主要优点包括: 1) 可用于高度稀疏数据场景; 2) 具有线性的计算复杂度。本文将对 FM 框架进行简单介绍,并对其训练算法 — 随机梯度下降(SGD) 法和交替最小二乘法(ALS)法进行详细推导。...
分类:
系统相关 时间:
2014-10-28 12:21:35
阅读次数:
333
最近学习了一种叫做 Factorization Machines(简称 FM)的通用算法,它可对任意的实值向量进行预测。其主要优点包括: 1) 可用于高度稀疏数据场景; 2) 具有线性的计算复杂度。本文将对 FM 框架进行简单介绍,并对其训练算法 — 随机梯度下降(SGD)法和交替最小二乘(ALS)法进行详细推导。...
分类:
系统相关 时间:
2014-10-28 12:21:25
阅读次数:
371
稀疏编码在稀疏自编码算法中,我们试着学习得到一组权重参数 W(以及相应的截距 b),通过这些参数可以使我们得到稀疏特征向量 σ(Wx + b) ,这些特征向量对于重构输入样本非常有用。稀疏编码可以看作是稀疏自编码方法的一个变形,该方法试图直接学习数据的特征集。利用与此特征集相应的基向量,将学习得到的...
分类:
其他好文 时间:
2014-09-19 21:00:16
阅读次数:
400