1. 感知器有一个问题,当面对的数据集不是线性可分的时候,『感知器规则』可能无法收敛,这意味着我们永远也无法完成一个感知器的训练。为了解决这个问题,我们使用一个可导的线性函数来替代感知器的阶跃函数,这种感知器就叫做线性单元。线性单元在面对线性不可分的数据集时,会收敛到一个最佳的近似上。这样替换了激活 ...
分类:
其他好文 时间:
2019-09-01 18:52:34
阅读次数:
128
PLA(perceptron learning algorithm)感知机学习PLA(perceptron learning algorithm)感知机学习概述适用范围线性可分线性不可分感知机结构图示公式简化错误率Analogy期末成绩算法初始版本w(t+1)=w(t)+y(t)x(t) 调整的意义... ...
分类:
其他好文 时间:
2019-07-28 14:14:30
阅读次数:
207
PLA(perceptron learning algorithm)感知机学习 [TOC] 概述 感知机是一种二元线性分类模型,它试图找到一个直线或者平面或者超平面将数据分为两部分,感知机同样是属于监督学习的范畴 适用范围 线性可分 二维空间中以下样本线性可分,PLA完美解决 线性不可分 左侧样本有 ...
分类:
其他好文 时间:
2019-07-28 10:56:11
阅读次数:
157
支持向量机原理(一) 线性支持向量机 支持向量机原理(二) 线性支持向量机的软间隔最大化模型 支持向量机原理(三)线性不可分支持向量机与核函数 支持向量机原理(四)SMO算法原理 支持向量机原理(五)线性支持回归 在支持向量机原理(一) 线性支持向量机中,我们对线性可分SVM的模型和损失函数优化做了... ...
分类:
其他好文 时间:
2019-07-19 18:59:11
阅读次数:
89
支持向量机原理(一) 线性支持向量机 支持向量机原理(二) 线性支持向量机的软间隔最大化模型 支持向量机原理(三)线性不可分支持向量机与核函数 支持向量机原理(四)SMO算法原理 支持向量机原理(五)线性支持回归 支持向量机(Support Vecor Machine,以下简称SVM)虽然诞生只有短... ...
分类:
其他好文 时间:
2019-07-19 18:57:09
阅读次数:
106
支持向量机原理(一) 线性支持向量机 支持向量机原理(二) 线性支持向量机的软间隔最大化模型 支持向量机原理(三)线性不可分支持向量机与核函数 支持向量机原理(四)SMO算法原理 支持向量机原理(五)线性支持回归 在前面两篇我们讲到了线性可分SVM的硬间隔最大化和软间隔最大化的算法,它们对线性可分的... ...
分类:
其他好文 时间:
2019-07-19 18:41:54
阅读次数:
114
1. 算法思想 对线性可分的情形:通过最大化硬间隔(几何间隔),找出最佳分离超平面,从而分类数据 对弱线性可分情形:最大化软间隔(通过加一个松弛因子),找出分离超平面,分类数据 线性不可分的情形:通过核技巧把原始数据映射到高维空间,转化为线性可分的情形,然后继续求解。 2. 算法推导 (1)函数间隔 ...
分类:
其他好文 时间:
2019-07-18 22:31:24
阅读次数:
149
Deeplearning Algorithms tutorial 谷歌的人工智能位于全球前列,在图像识别、语音识别、无人驾驶等技术上都已经落地。而百度实质意义上扛起了国内的人工智能的大旗,覆盖无人驾驶、智能助手、图像识别等许多层面。苹果业已开始全面拥抱机器学习,新产品进军家庭智能音箱并打造工作站级别 ...
分类:
其他好文 时间:
2019-07-17 18:34:31
阅读次数:
300
1. 场景描述 问题:如何对对下图的线性可分数据集和线性不可分数据集进行分类? 思路: (1)对线性可分数据集找到最优分割超平面 (2)将线性不可分数据集通过某种方法转换为线性可分数据集 下面将带着这两个问题对支持向量机相关问题进行总结 2. 如何找到最优分割超平面 一般地,当训练数据集线性可分时, ...
分类:
其他好文 时间:
2019-06-30 09:35:02
阅读次数:
90
上一节讲线性SVM时,文末提到在线性可分的情况下,找到一个支持向量,可求得b 但是当出现下图实例时,无法找到一条线将实例分为两类,所谓线性不可分问题。 针对这种情况SVM提出了软间隔(soft margin),相对于硬间隔来说,简单将线性SVM看做硬间隔。 回顾硬间隔时优化目标: min $\fra ...
分类:
其他好文 时间:
2019-05-11 23:06:23
阅读次数:
186