图像检索:二维直方图+flann+KNN+欧几里得距离...
分类:
其他好文 时间:
2014-07-12 16:33:53
阅读次数:
419
为什么在图像检索里面使用到哈希(hashing)算法?基于哈希算法的图像检索方法将图片的高维内容特征映射到汉明空间(二值空间)中,生成一个低维的哈希序列来表示一幅图片,降低了图像检索系统对计算机内存空间的要求,提高了检索速度,能更好的适应海量图片检索的要求。最近或者最近邻问题在大规模的数据查询中用得...
分类:
其他好文 时间:
2014-06-28 11:15:51
阅读次数:
418
OpenCV Machine Learning 之 K最近邻分类器的应用
{CSDN:CODE:376557}...
分类:
其他好文 时间:
2014-06-20 13:12:23
阅读次数:
177
K-Nearest Neighbors
The algorithm caches all training samples and predicts the response for a new sample by analyzing a certain number (K) of the nearest neighbors of the sample using voting, calcu...
分类:
其他好文 时间:
2014-06-20 11:51:33
阅读次数:
337
几何变换几何变换可以看成图像中物体(或像素)空间位置改变,或者说是像素的移动。几何运算需要空间变换和灰度级差值两个步骤的算法,像素通过变换映射到新的坐标位置,新的位置可能是在几个像素之间,即不一定为整数坐标。这时就需要灰度级差值将映射的新坐标匹配到输出像素之间。最简单的插值方法是最近邻插值,就是令输...
分类:
其他好文 时间:
2014-06-07 16:56:49
阅读次数:
717
KNN最邻近规则,主要应用领域是对未知事物的识别,即判断未知事物属于哪一类,判断思想是,基于欧几里得定理,判断未知事物的特征和哪一类已知事物的的特征最接近;K最近邻(k-Nearest
Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果...
分类:
其他好文 时间:
2014-06-04 16:22:30
阅读次数:
399
在数据分析和数据挖掘的过程中,我们经常需要知道个体间差异的大小,进而评价个体的相似性和类别。最常见的是数据分析中的相关分析,数据挖掘中的分类和聚类算法,如K最近邻(KNN)和K均值(K-Means)。当然衡量个体差异的方法有很多,最近查阅了相关的资料,这里整理罗列下。
为了方便下面的解释和举例,先设定我们要比较X个体和Y个体间的差异,它们都包含了N个维的特征,即X=(x1, x2, x3, ...
分类:
其他好文 时间:
2014-05-25 07:01:04
阅读次数:
317
1.算法简介
协同过滤(collaborative filtering)的核心思想:利用其他用户的行为来预测当前用户。协同过滤算法是推荐系统中最基本的,同时在业界广为使用。根据使用的方法不同,可以分为基于用户(user-based)、基于物品(item-based)的最近邻推荐。
基于用户的最近邻推荐的主要思想:对于一个给定的评分集,找出与当前用户u口味相近的k个用户;然后,对...
分类:
其他好文 时间:
2014-05-24 17:59:03
阅读次数:
308
1.算法简介协同过滤(collaborative
filtering)的核心思想:利用其他用户的行为来预测当前用户。协同过滤算法是推荐系统中最基本的,同时在业界广为使用。根据使用的方法不同,可以分为基于用户(user-based)、基于物品(item-based)的最近邻推荐。基于用户的最近邻推荐的...
分类:
其他好文 时间:
2014-05-24 13:23:43
阅读次数:
392
属于离散监督,是一个简单的分类算法工作原理:存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。k-...
分类:
其他好文 时间:
2014-05-04 20:00:18
阅读次数:
388