码迷,mamicode.com
首页 >  
搜索关键字:朴素贝叶斯分类    ( 254个结果
数据挖掘十大经典算法(9) 朴素贝叶斯分类器 Naive Bayes
贝叶斯分类器 贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。眼下研究较多的贝叶斯分类器主要有四种,各自是:Naive Bayes、TAN、BAN和GBN。 贝叶斯网络是一个带有概率...
分类:编程语言   时间:2015-01-21 14:57:37    阅读次数:405
朴素贝叶斯分类算法
参考资料地址: http://www.cnblogs.com/leoo2sk/archive/2010/09/17/naive-bayesian-classifier.html 我的数据挖掘算法实现源码地址:https://github.com/linyiqun/DataMiningAlgorithm 介绍 要介绍朴素贝叶斯算法(Naive Bayes),那就得先介绍贝叶斯分类算法,贝叶斯分...
分类:编程语言   时间:2015-01-13 19:53:09    阅读次数:245
基于朴素贝叶斯分类算法的邮件过滤系统
前言 朴素贝叶斯算法最为广泛而经典的应用毫无疑问是文档分类,更具体的情形是邮件过滤系统。 本文详细地讲解一个基于朴素贝叶斯分类算法的邮件过滤系统的具体实现。 本文侧重于工程实现,至于其中很多算法的细节请参考之前的一篇文章:朴素贝叶斯分类算法原理分析与代码实现准备数据:切分文本 获取到文本文件...
分类:编程语言   时间:2014-12-26 18:35:50    阅读次数:240
朴素贝叶斯分类算法原理分析与代码实现
前言 本文介绍机器学习分类算法中的朴素贝叶斯分类算法并给出伪代码,Python代码实现。词向量 朴素贝叶斯分类算法常常用于文档的分类,而且实践证明效果是挺不错的。 在说明原理之前,先介绍一个叫词向量的概念。 --- 它一般是一个布尔类型的集合,该集合中每个元素都表示其对应的单词是否在文档中出现...
分类:编程语言   时间:2014-12-25 23:21:32    阅读次数:383
机器学习经典算法详解及Python实现---朴素贝叶斯分类及其在文本分类、垃圾邮件检测中的应用
朴素贝叶斯分类是贝叶斯分类器的一种,贝叶斯分类算法是统计学的一种分类方法,利用概率统计知识进行分类,其分类原理就是利用贝叶斯公式根据某对象的先验概率计算出其后验概率(即该对象属于某一类的概率),然后选择具有最大后验概率的类作为该对象所属的类。总的来说:当样本特征个数较多或者特征之间相关性较大时,朴素贝叶斯分类效率比不上决策树模型;当各特征相关性较小时,朴素贝叶斯分类性能最为良好。另外朴素贝叶斯的计算过程类条件概率等计算彼此是独立的,因此特别适于分布式计算。本文详述了朴素贝叶斯分类的统计学原理,并在文本分类中...
分类:编程语言   时间:2014-12-12 20:56:48    阅读次数:1004
朴素贝叶斯分类器的应用-转载加我的理解注释
生活中很多场合需要用到分类,比如新闻分类、病人分类等等。 本文介绍朴素贝叶斯分类器(Naive Bayes classifier),它是一种简单有效的常用分类算法。 一、病人分类的例子 让我从一个例子开始讲起,你会看到贝叶...
分类:其他好文   时间:2014-12-04 01:12:30    阅读次数:333
理解朴素贝叶斯分类器的三层境界
1.背景 首先,在文章的开头,先提出几个问题,如果这些问题你都答得上来,那么本文你就无需阅读了,或者你阅读的动机纯粹是给本文挑毛病,当然我也无比欢迎,请发送邮件“毛病の朴素贝叶斯”发送至297314262@qq.com,我会认真阅读你的来信。 By the way,如果阅读完本文,你还是无法回答以下问题,那么也请你邮件通知我,我会尽量解答你的疑惑。 朴素贝叶斯分类器中的“朴素”特指此...
分类:其他好文   时间:2014-11-24 01:12:20    阅读次数:215
朴素贝叶斯法
朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。简单来说,朴素贝叶斯分类器假设样本每个特征与其他特征都不相关。举个例子,如果一种水果具有红,圆,直径大概4英寸等特征,该水果可以被判定为是苹果。尽管这些特征相互依赖或者有些特征由其他特征决定,然而朴素贝叶斯分类器认为这些属性在判定该水果是.....
分类:其他好文   时间:2014-11-15 20:14:09    阅读次数:319
贝叶斯信念网络总结
1.概念和机制 朴素贝叶斯分类法假定类条件独立。当假定成立时,与其他所有分类器相比,朴素贝叶斯分类器是最准确的。然而,在实践中,变量之间可能存在依赖关系。贝叶斯信念网络说明联合条件概率分布。它允许在变量的子集间定义类条件独立性。它提供一种因果关系的图形模型,可以在其上进行学习。训练后的贝叶斯信念网....
分类:其他好文   时间:2014-11-07 18:36:30    阅读次数:283
贝叶斯分裂方法总结
1.综述: 贝叶斯分类方法是统计学分类方法。它们可以预测类隶属关系的概率,如一个给定的元组属于一个特定类的概率。贝叶斯分类基于贝叶斯定理。分类算法的比较研究发现,一种称为朴素贝叶斯分类法的简单贝叶斯分类法可以与决策树和经过挑选的神经网络分类器相媲美。用于大型数据库,贝叶斯分类法也已表现出高准确率和....
分类:其他好文   时间:2014-11-01 16:02:39    阅读次数:240
254条   上一页 1 ... 21 22 23 24 25 26 下一页
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!