码迷,mamicode.com
首页 >  
搜索关键字:梯度下降法    ( 389个结果
梯度下降法与牛顿法的解释与对比
1 梯度下降法我们使用梯度下降法是为了求目标函数最小值f(X)对应的X,那么我们怎么求最小值点x呢?注意我们的X不一定是一维的,可以是多维的,是一个向量。我们先把f(x)进行泰勒展开:这里的α是学习速率,是个标量,代表X变化的幅度;d表示的是单位步长,是一个矢量,有方向,单位长度为1,代表X变化的方...
分类:其他好文   时间:2014-12-18 22:07:28    阅读次数:294
数值优化-梯度下降法
NG的课件1,引出常用的优化方法梯度下降法(gradient descent) 对于 ordinary least squares regression, cost function为 求最小值,意味着求导数为0的位置 考虑只有一个样本 这叫做LMS update rule (Least Mean ...
分类:其他好文   时间:2014-12-09 08:11:49    阅读次数:330
线性回归和局部加权线性回归
线性回归算法优缺点:优点:结果易于理解,计算不复杂缺点:对非线性数据拟合不好适用数据类型:数值型和标称型算法思想:这里是采用了最小二乘法计算(证明比较冗长略去)。这种方式的优点是计算简单,但是要求数据矩阵X满秩,并且当数据维数较高时计算很慢;这时候我们应该考虑使用梯度下降法或者是随机梯度下降(同Lo...
分类:其他好文   时间:2014-12-06 01:21:06    阅读次数:892
感知机
感知机学习旨在求出将训练数据集进行线性划分的分类超平面,为此,导入了基于误分类的损失函数,然后利用梯度下降法对损失函数进行极小化,从而求出感知机模型。感知机模型是神经网络和支持向量机的基础。下面分别从感知机学习的模型、策略和算法三个方面来介绍。1. 感知机模型 感知机模型如下:f(x)= sig.....
分类:其他好文   时间:2014-11-15 20:14:01    阅读次数:345
使用matlab用优化后的梯度下降法求解达最小值时参数
matlab可以用-Conjugate gradient-BFGS-L-BFGS等优化后的梯度方法来求解优化问题。当feature过多时,最小二乘计算复杂度过高(O(n**3)),此时这一些列优化版梯度下降算法就成为了解优化问题的更优选择。它们的优点为:不需要像对原始梯度下降那样手动选择学习速率α一...
分类:其他好文   时间:2014-11-14 22:45:17    阅读次数:785
梯度下降法
一、基本概念梯度下降法,就是利用负梯度方向来决定每次迭代的新的搜索方向,使得每次迭代能使待优化的目标函数逐步减小。梯度下降法是2范数下的最速下降法。 最速下降法的一种简单形式是:x(k+1)=x(k)-a*g(k),其中a称为学习速率,可以是较小的常数。g(k)是x(k)的梯度。二、导数(1)定义设...
分类:其他好文   时间:2014-11-05 10:32:40    阅读次数:516
感知机
机器学习算法 原理、实践与实战 —— 感知机感知机(perceptron)是二分类的线性分类模型,输入为特征向量,输出为实例的类别,取值+1和-1。感知机学习旨在求出将训练数据进行线性划分的分离超平面,为此,引入了基于误分类的损失函数,利用梯度下降法对损失函数进行极小化,求得感知机模型。1. 感知机...
分类:其他好文   时间:2014-11-03 14:26:40    阅读次数:270
梯度下降法和随机梯度下降法的区别
这几天在看《统计学习方法》这本书,发现 梯度下降法在 感知机 等机器学习算法中有很重要的应用,所以就特别查了些资料。 一.介绍 梯度下降法(gradient descent)是求解无约束最优化问题的一种常用方法,有实现简单的优点。梯度下降法是迭代算法,每一步需要求解目标函数的梯度向量。二.应用...
分类:其他好文   时间:2014-10-30 20:54:29    阅读次数:895
切向量,法向量,梯度
通过爬山理解梯度与法向量的关系...
分类:其他好文   时间:2014-10-15 14:41:40    阅读次数:358
在matlab中实现梯度下降法
梯度下降法的原理,本文不再描述,请参阅其它资料。梯度下降法函数function [k ender]=steepest(f,x,e),需要三个参数f、x和e,其中f为目标函数,x为初始点,e为终止误差。输出也为两个参数,k表示迭代的次数,ender表示找到的最低点。steepest.m:functio...
分类:其他好文   时间:2014-10-15 02:31:49    阅读次数:399
389条   上一页 1 ... 35 36 37 38 39 下一页
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!