一、先弄清楚机器学习的几个概念:训练集:训练样本,每个样本都由表示要学习的特征集(输入变量)和目标(输出变量) 设训练样本数为m 输入特征\变量input : x 其中每个样本用 表示(第i个样本),样本中每个特征/输入用表示(第i个样本中的第j个特征) 输出特征/变量output : y 其中.....
分类:
其他好文 时间:
2014-11-29 22:52:46
阅读次数:
262
稀疏自编码器的学习结构:稀疏自编码器Ⅰ:神经网络反向传导算法梯度检验与高级优化稀疏自编码器Ⅱ:自编码算法与稀疏性可视化自编码器训练结果Exercise: Sparse Autoencoder自编码算法与稀疏性已经讨论了神经网络在有监督学习中的应用,其中训练样本是有类别标签的(x_i,y_i)。自编码...
分类:
其他好文 时间:
2014-11-28 21:22:29
阅读次数:
588
在上一篇《DeepLearning 的挑战: Extreme Learning Machine(超限学习机)?》 中介绍了一些ELM与DL 的一些比较,这篇主要介绍ELM的原理。
首先,ELM的核心就是将复杂的迭代过程转变为隐层参数随机产生。
其次,ELM 是一个神经网络,有输入层、隐藏层,输出层。
最后,ELM 的多分类效果优于SVM。
对于训练样本集{xi,ti} i=1-N,...
分类:
其他好文 时间:
2014-11-25 12:48:37
阅读次数:
226
朴素贝叶斯(NaiveBayesian)算法的核心思想是:分别计算给定样本属于每个分类的概率,然后挑选概率最高的作为猜测结果。假定样本有2个特征x和y,则其属于分类1的概率记作p(C1|x,y),它的值无法直接分析训练样本得出,需要利用公式间接求得。其中p(Ci)表示训练样本中分类为Ci的..
分类:
编程语言 时间:
2014-11-03 10:22:12
阅读次数:
246
决策树的核心思想是:根据训练样本构建这样一棵树,使得其叶节点是分类标签,非叶节点是判断条件,这样对于一个未知样本,能在树上找到一条路径到达叶节点,就得到了它的分类。举个简单的例子,如何识别有毒的蘑菇?如果能够得到一棵这样的决策树,那么对于一个未知的蘑菇就很..
分类:
编程语言 时间:
2014-10-30 19:26:22
阅读次数:
338
本内容 来自微信公众平台:机器学习之窗 以及 http://www.cnblogs.com/kaituorensheng/p/3579347.html在模式识别领域中,最近邻居法(KNN算法,又译K-近邻算法)是将在特征空间中最接近的训练样本进行分类的方法。最近邻居法采用向量空间模型来分类,概念.....
分类:
编程语言 时间:
2014-10-29 18:58:24
阅读次数:
387
有监督学习:对具有概念标记(分类)的训练样本进行学习,以尽可能对训练样本集外的数据进行标记(分类)预测。这里,所有的标记(分类)是已知的。因此,训练样本的岐义性低。无监督学习:对没有概念标记(分类)的训练样本进行学习,以发现训练样本集中的结构性知识。这里,所有的标记(分类)是未知的。因此,训练样本的...
分类:
其他好文 时间:
2014-10-17 23:11:22
阅读次数:
187
0 引言机器学习(machine learning)是人工智能的核心研究领域,是智能信息处理的重要途径。监督学习(supervised learning)是机器学习中研究最多、应用最广泛的一种学习途径。在传统的监督学习中,学习系统通过对大量的有标记训练样本(labeled examples)进行学习...
分类:
其他好文 时间:
2014-10-17 23:08:53
阅读次数:
502
假设给定m个训练样本的训练集,用梯度下降法训练一个神经网络,对于单个训练样本(x,y),定义该样本的损失函数:那么整个训练集的损失函数定义如下:第一项是所有样本的方差的均值。第二项是一个归一化项(也叫权重衰减项),该项是为了减少权连接权重的更新速度,防止过拟合。我们的目标是最小化关于W和 b 的函数...
分类:
编程语言 时间:
2014-10-13 02:27:02
阅读次数:
310