[TOC] 可能我从来就没真正的整明白过,只是会考试而已 搞清楚事情的来龙去脉不容易忘记 两个常见的参数估计法: 极大似然估计法和最小二乘法 1.极大似然估计 "ref知乎" ,模型已定,参数未知的条件下,根据实验数据估计参数模型,等价于“利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参 ...
分类:
其他好文 时间:
2020-01-14 11:26:18
阅读次数:
151
根据已知特征值X和标签结果Y,我们利用线性回归模型(为了简化,作者以一元线性回归为例说明)可以得出 yi^=wxi+b。 损失函数:loss=Σ(yi-yi^)2 ,为了得到更加准确的拟合模型,我们的目标就转化为使损失函数loss最小,即: argmin loss=argmin Σ(yi-yi^)2 ...
分类:
其他好文 时间:
2020-01-11 14:57:31
阅读次数:
154
本文在少用数学公式的情况下,尽量仅依靠感性直觉的思考来讲解 极大似然估计 & 极大后验概率估计,并且从名著中找了几个实例给大家看看这两种估计如何应用 & 其非常有趣的特点。 ...
分类:
其他好文 时间:
2020-01-10 23:56:15
阅读次数:
194
机器学习基础 [toc] 1. 概率和统计 概率(probabilty)和统计(statistics)看似两个相近的概念,其实研究的问题刚好相反。 顾名思义: 概率研究的问题是,已知一个模型和参数,怎么去预测这个模型产生的结果的特性(例如均值,方差,协方差等等)。 统计研究的问题则相反。统计是,有一 ...
分类:
其他好文 时间:
2020-01-09 00:55:49
阅读次数:
134
目录: 隐马尔可夫模型 Viterbi算法(必须掌握) 简述:普通领域不常用,自然语言与金融领域用的比较多,总共涉及到概率问题,求参数问题,取范围问题。 用到的知识点有全概率公式,条件概率公式,边缘概率公式,贝叶斯公式,极大似然估计 概率计算问题 直接计算法 暴力算法 前向算法 后向算法 后向算法不 ...
分类:
其他好文 时间:
2020-01-06 23:11:21
阅读次数:
119
时间序列ARIMA模型 1、数据的平稳性与差分法 让均值和方差不发生明显的变化(让数据变平稳),用差分法 2、ARIMA模型 差分自回归平均移动模型 求解回归的经典算法:最大似然估计、最小二乘法 在具体运用时,需要指定三个参数,即(p,d,q); 其中:p表示自回归的阶数, d表示做几阶差分(一般做 ...
分类:
其他好文 时间:
2020-01-05 19:06:53
阅读次数:
133
[TOC] "Neal R. M. , MCMC Using Hamiltonian Dynamics[J]. arXiv: Computation, 2011: 139 188." @article{neal2011mcmc, title={MCMC Using Hamiltonian Dynam ...
分类:
其他好文 时间:
2020-01-05 15:40:49
阅读次数:
95
朴素贝叶斯模型是机器学习中经常提到的概念。但是相信很多朋友都是知其然而不知其所以然。本文将尽量使用易懂的方式介绍朴素贝叶斯模型原理,并且通过具体应用场景和源码来帮助大家深入这个概念。 ...
分类:
其他好文 时间:
2020-01-04 22:39:00
阅读次数:
122
原文 | https://mp.weixin.qq.com/s/bOchsmHTINKKlyabCQKMSg 相关阅读 最大似然估计(概率10) 寻找“最好”(3)函数和泛函的拉格朗日乘数法 伯努利分布 如果随机试验仅有两个可能的结果,那么这两个结果可以用0和1表示,此时随机变量X将是一个0/1的变 ...
分类:
其他好文 时间:
2019-12-28 20:40:55
阅读次数:
95
陈某在B站上面搜索了监督学习和非监督学习 看完了一段40分钟左右介绍非监督学习算法中介绍期望最大算法(EM算法)的教学视频 也顺带又复习了一遍二项分布以及标准正态的概率密度 极大似然估计的计算方法 了解了算法背景 极大似然估计存在局限性 1.需要事先假定假定数据分类 2.假设的数据分布与真实的数据分 ...
分类:
其他好文 时间:
2019-12-23 20:39:21
阅读次数:
94