四大机器学习降维算法:PCA、LDA、LLE、Laplacian Eigenmaps机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中。降维的本质是学习一个映射函数 f : x->y,其中x是原始数据点的表达,目前最多使用向量表达形式。 y是数据点映射后的低维...
分类:
编程语言 时间:
2015-05-30 20:59:04
阅读次数:
253
本科论文做的是人脸识别,对一些算法进行复习。。。概念PCA (主成分分析算法)主要用于减少数据集的维数,同时保持数据集中方差最大的贡献。(我的理解是,图像处理时,数据量太大,通常需要降低数据维数,但是又希望保留贡献大的特征数据,PCA就是保留主要成分的降维算法)。人脸识别中,利用PCA算法构建特征脸...
分类:
其他好文 时间:
2015-04-17 09:36:56
阅读次数:
705
http://ufldl.stanford.edu/wiki/index.php/主成分分析if ~exist('train_IM_all','var')||~exist('train_LA_all','var')%为加快程序运行,以便重复运行本文件时不需要重复载入数据 load train_res...
分类:
编程语言 时间:
2014-12-29 01:00:19
阅读次数:
241
PCA是一种非监督学习算法,它能够在保留大多数有用信息的情况下,有效降低数据纬度。它主要应用在以下三个方面:1. 提升算法速度2. 压缩数据,减小内存、硬盘空间的消耗3. 图示化数据,将高纬数据映射到2维或3维总而言之,PCA干的事情就是完成一个将原始的n维数据转化到k维的映射。其中,k<n它的核心...
分类:
编程语言 时间:
2014-12-10 17:44:02
阅读次数:
256
原始特征的数量可能很大,或者说样本是处于一个高维空间中,通过映射或变换的方法,降高维数据降低到低维空间中的数据,这个过程叫特征提取,也称降维。 特征提取得基本任务研究从众多特征中求出那些对分类最有效的特征,从而实现特征空间维数的压缩。传统的降维技术可以分为线性和非线性两类。(1)线性降维算法主要有P...
分类:
其他好文 时间:
2014-12-06 20:14:58
阅读次数:
234
算法简介
主成分分析(PrincipalComponentAnalysis,简称PCA)是一种常用的基于变量协方差矩阵对信息进行处理、压缩和抽提的有效方法。主要用于对特征进行降维。
算法假设
数据的概率分布满足高斯分布或是指数型的概率分布。方差高的向量视为主元。...
分类:
其他好文 时间:
2014-07-29 14:32:48
阅读次数:
196
1,单值分解:线性代数的重要部分,已经被广泛用于模式识别中的降维和信息检索应用中。
2,独立成分分析
3,非负矩阵分解
4,非线性降维算法:① kernel PCA②基于图的方法(拉普拉斯算子,Local LinearEmbedding (LLE),Isometric Mapping (ISOMAP))
5,离散傅里叶变换
6,离散cos和sin变换
7,THEHADAMARD TRA...
分类:
其他好文 时间:
2014-07-22 14:31:58
阅读次数:
252