码迷,mamicode.com
首页 >  
搜索关键字:gbdt    ( 222个结果
XGBoost 原理及应用
xgboost原理及应用--转 1.背景 关于xgboost的原理网络上的资源很少,大多数还停留在应用层面,本文通过学习陈天奇博士的PPT地址和xgboost导读和实战 地址,希望对xgboost原理进行深入理解。 2.xgboost vs gbdt 说到xgboost,不得不说gbdt。了解gbd ...
分类:其他好文   时间:2019-02-20 09:27:26    阅读次数:195
GBDT原理学习
首先推荐 刘建平 的博客学习算法原理推导,这位老师的讲解都很详细,不过GBDT的原理讲解我没看明白, 而是1、先看的https://blog.csdn.net/zpalyq110/article/details/79527653这篇博客,用实例让读者对该算法有一个清晰的了解; 2、接着是刘建平老师 ...
分类:其他好文   时间:2019-02-17 20:49:02    阅读次数:194
机器学习 gbdt-xgboost 决策树提升
[TOC] xgboost xgboost是一个监督模型,它对应的模型就是一堆CART树,即由CART树组成的随机森林。预测的最终结果是由随机森林中的所有CART树的预测分数相加。 总而言之xgboost的想要解决的问题是通过前t 1棵的预测值加和我们是否能算出第t棵树的最优预测值? CART(Cl ...
分类:其他好文   时间:2019-01-16 15:02:16    阅读次数:216
十大经典预测算法(九)---GBDT
GBDT又叫梯度提升决策树,它也属于Boosting框架。GBDT核心原理如下: 如图所示,用GBDT预测年龄,第一轮,预测到年龄为20,它和真实值之间的残差为10,第二轮,GBDT开始预测上一轮的残差10,预测结果为6,这一轮 的残差为4,第三轮,以年龄4为预测目标,预测来的值为3,和真实值之间相 ...
分类:编程语言   时间:2019-01-11 15:13:33    阅读次数:288
GBDT与xgb区别,以及梯度下降法和牛顿法的数学推导
2019年01月05日 15:48:32 IT界的小小小学生 阅读数:31 标签: xgb gbdt 梯度下降法 牛顿法 xgboost原理 更多 个人分类: data mining 深度学习 2019年01月05日 15:48:32 IT界的小小小学生 阅读数:31 标签: xgb gbdt 梯度 ...
分类:其他好文   时间:2019-01-06 18:13:57    阅读次数:188
GBDT 算法:原理篇
本文由云+社区发表 GBDT 是常用的机器学习算法之一,因其出色的特征自动组合能力和高效的运算大受欢迎。 这里简单介绍一下 GBDT 算法的原理,后续再写一个实战篇。 1、决策树的分类 决策树分为两大类,分类树和回归树。 分类树用于分类标签值,如晴天/阴天/雾/雨、用户性别、网页是否是垃圾页面; 回 ...
分类:编程语言   时间:2019-01-03 21:46:57    阅读次数:249
XGboost学习总结
XGboost,全称Extrem Gradient boost,极度梯度提升,是陈天奇大牛在GBDT等传统Boosting算法的基础上重新优化形成的,是Kaggle竞赛的必杀神器。 XGboost属于集成学习的模型,在集成学习中主要有三个算法,Bagging,Boosting和Stacking,Ba ...
分类:其他好文   时间:2018-12-27 13:11:57    阅读次数:146
GBDT算法梳理
1.GBDT(Gradient Boosting Decision Tree)思想 Boosting : Gradient boosting Gradient boosting是 boosting 的其中一种方法,它主要的思想是,每一次建立单个学习器时,是在之前建立的模型的损失函数的梯度下降方向。 ...
分类:编程语言   时间:2018-12-21 21:20:35    阅读次数:311
随机森林算法基础梳理
1.集成学习概念 在机器学习的有监督学习算法中,我们的目标是学习出一个稳定的且在各个方面表现都较好的模型,但实际情况往往不这么理想,有时我们只能得到多个有偏好的模型(弱监督模型,在某些方面表现的比较好)。集成学习就是组合这里的多个弱监督模型以期得到一个更好更全面的强监督模型,集成学习潜在的思想是即便 ...
分类:编程语言   时间:2018-12-19 21:56:48    阅读次数:238
再谈XGBoost原理
GBDT的核心就在于累加所有树的结果作为最终结果。分类树决策树的分类算法有很多,以具有最大熵的特征进行分类,以信息增益特征进行分类(ID3),以增益率特征进行分类(C4.5),以基尼系数特征进行分类(CART分类与回归树)等等。这一类决策树的特点就是最后的结果都是离散的具体的类别,比如苹果的好/坏,性别男/女。回归树回归树与分类树的流程大致一样,不同的是回归树在每个节点都会有一个预测值,以年龄为例
分类:其他好文   时间:2018-12-12 10:32:53    阅读次数:286
222条   上一页 1 ... 5 6 7 8 9 ... 23 下一页
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!