事实上,GMM 和 k-means 很像,不过 GMM 是学习出一些概率密度函数来(所以 GMM 除了用在 clustering 上之外,还经常被用于 density estimation ),简单地说,k-means 的结果是每个数据点被 assign 到其中某一个 cluster 了,而 GMM 则给出这些数据点被 assign 到每个 cluster 的概率,又称作 soft assignment 。...
分类:
编程语言 时间:
2015-05-08 18:10:52
阅读次数:
367
本节内容: 1、混合高斯模型; 2、将混合高斯模型应用到混合贝叶斯模型;(应用:文本聚类) 3、结合EM算法,讨论因子分析算法; 4、高斯分布的有用性质。混合高斯模型将一般化的EM算法流程(下载笔记)应用到混合高斯模型因子分析模型因子分析的基本目的就是用少数几个因子去描述许多指标或因素之间的联系,即...
分类:
其他好文 时间:
2015-04-02 14:44:36
阅读次数:
298
GMM这是图像处理,模式识别和深度学习领域一个百嚼不烂的话题。很多人被一堆数学公式,迭代求和和看似毫无联系的likehood EM算法搞得糊里糊涂。其实就算羡慕着很多牛气哄哄的学霸炫耀公式推理的IT普工们,我们有没有问过自己,我们真的知道GMM吗?于是有些人和我一样有了如下的思考和疑问:1.到底什么...
分类:
编程语言 时间:
2015-02-07 18:40:37
阅读次数:
10644
高斯模型就是用高斯概率密度函数(正态分布曲线)精确地量化事物,将一个事物分解为若干的基于高斯概率密度函数(正态分布曲线)形成的模型。 对图像背景建立高斯模型的原理及过程:图像灰度直方图反映的是图像中某个灰度值出现的频次,也可以以为是图像灰度概率密度的估计。如果图像所包含的目标区域和背景区域相差比较大...
分类:
其他好文 时间:
2014-12-19 11:37:46
阅读次数:
826
今天,我要介绍我们早就知道的一种分布,它叫做高斯分布。高斯分布在概率论中算是比较核心的一种分布了,而在机器学习中,高斯分布也随处可见,比如单高斯模型,高斯混合模型,高斯过程等等,它们都是基于高斯分布的。作为理解连续性随机变量的基础和深入理解在机器学习中的广泛应用,高斯分布是十分有必要学习的。
高斯分布又叫做正态分布,高斯分布概率密度函数的函数形式是由德国著名的天才数学家、统计学家、物理学家...
分类:
其他好文 时间:
2014-12-02 11:50:57
阅读次数:
262
先列明材料:高斯混合模型的推导计算(英文版):http://www.seanborman.com/publications/EM_algorithm.pdf这位翻译写成中文版:http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006936.ht...
分类:
编程语言 时间:
2014-11-29 20:14:51
阅读次数:
182
本文就高斯混合模型(GMM,Gaussian Mixture Model)参数如何确立这个问题,详细讲解期望最大化(EM,Expectation Maximization)算法的实施过程。单高斯分布模型GSM多维变量X服从高斯分布时,它的概率密度函数PDF为:x是维度为d的列向量,u是模型期望,Σ是...
分类:
其他好文 时间:
2014-11-27 12:21:23
阅读次数:
163
本文对于高斯混合模型(GMM)进行了简要的讨论。对于单高斯模型,高斯混合模型以及K-means等都进行了简要的介绍以及其关系的梳理,着重介绍了高斯混合模型的参数估计问题,这包括在样本分类已知情况下的MLE算法估计,以及在样本分类未知情况下的EM算法估计。...
分类:
其他好文 时间:
2014-11-22 16:07:13
阅读次数:
339
EM算法,这是cv界比较有名的一种算法了,虽然很早就听说过,但真正深究还是最近几天看斯坦福公开课笔记的时候。之所以EM和MoG放在一起,是因为我们在求解MoG模型的时候需要用到EM算法,所以这里我们先来介绍下EM算法。 在介绍EM算法的之前,我们先来普及下Jensen不等式的知识。首先我们来给出.....
分类:
编程语言 时间:
2014-11-14 17:36:59
阅读次数:
532