标签:
Time Limit: 20 Sec
Memory Limit: 256 MB
http://acm.uestc.edu.cn/#/problem/show/483
Data structure is a fundamental course of Computer Science, so that each contestant is highly likely to solve this data structure problem.
A Heap data structure is a binary tree with the following properties:
It is a complete binary tree; that is, each level of the tree is completely filled, except possibly the bottom level. At this level, it is filled from left to right.
It satisfies the heap-order property: The key stored in each node is greater than or equal to the keys stored in its children.
So such a heap is sometimes called a max-heap. (Alternatively, if the comparison is reversed, the smallest element is always in the root node, which results in a min-heap.)
A binary search tree (BST), which may sometimes also be called an ordered or sorted binary tree, is a node-based binary tree data structure which has the following properties:
The left subtree of a node contains only nodes with keys less than (greater than) the node‘s key.
The right subtree of a node contains only nodes with keys greater than (less than) the node‘s key.
Both the left and right subtrees must also be binary search trees.
Given a complete binary tree with N keys, your task is to determine the type of it.
Note that either a max-heap or a min-heap is acceptable, and it is also acceptable for both increasing ordered BST and decreasing ordered BST.
Input
The first line of the input is T (no more than 100), which stands for the number of test cases you need to solve.
For each test case, the first line contains an integer N (1≤N≤1000), indicating the number of keys in the binary tree. On the second line, a permutation of 1 to N is given. The key stored in root node is given by the first integer, and the 2ith and 2i+1thintegers are keys in the left child and right child of the ith integer respectively.
Output
For every test case, you should output Case #k: first, where k indicates the case number and counts from 1. Then output the type of the binary tree:
Neither — It is neither a Heap nor a BST.
Both — It is both a Heap and a BST.
Heap — It is only a Heap.
BST — It is only a BST.
Sample Input
4
1
1
3
1 2 3
3
2 1 3
4
2 1 3 4
Sample Output
Case #1: Both
Case #2: Heap
Case #3: BST
Case #4: Neither
题意
给n个数,然后这n个数构成的二叉树,是平衡二叉树还是堆
题解:
直接利用树的递归性质进行dfs即可,值得注意的是在树的判定中终止条件是怎么设计的
代码
1 #include <cstdio> 2 #include <cmath> 3 #include <cstring> 4 #include <ctime> 5 #include <iostream> 6 #include <algorithm> 7 #include <set> 8 #include <vector> 9 #include <sstream> 10 #include <queue> 11 #include <typeinfo> 12 #include <fstream> 13 #include <map> 14 #include <stack> 15 typedef long long ll; 16 using namespace std; 17 #define test freopen("1.txt","r",stdin) 18 #define maxn 2000001 19 #define mod 10007 20 #define eps 1e-9 21 const int inf=0x3f3f3f3f; 22 const ll infll = 0x3f3f3f3f3f3f3f3fLL; 23 inline int read() 24 { 25 ll x=0,f=1; 26 char ch=getchar(); 27 while(ch<‘0‘||ch>‘9‘) 28 { 29 if(ch==‘-‘)f=-1; 30 ch=getchar(); 31 } 32 while(ch>=‘0‘&&ch<=‘9‘) 33 { 34 x=x*10+ch-‘0‘; 35 ch=getchar(); 36 } 37 return x*f; 38 } 39 inline void out(int x) 40 { 41 if(x>9) out(x/10); 42 putchar(x%10+‘0‘); 43 } 44 //************************************************************************************** 45 int a[2000]; 46 int n; 47 bool is_Heap1(int root) 48 { 49 int l=root*2,r=root*2+1; 50 int flag1=1; 51 if(l<=n&&(a[l]<a[root]||!is_Heap1(l))) 52 flag1=0; 53 int flag2=1; 54 if(r<=n&&(a[r]<a[root]||!is_Heap1(r))) 55 flag2=0; 56 return flag1&&flag2; 57 } 58 bool is_Heap2(int root) 59 { 60 int l=root*2,r=root*2+1; 61 int flag1=1; 62 if(l<=n&&(a[l]>a[root]||!is_Heap2(l))) 63 flag1=0; 64 int flag2=1; 65 if(r<=n&&(a[r]>a[root]||!is_Heap2(r))) 66 flag2=0; 67 return flag1&&flag2; 68 } 69 bool is_BST1(int root) 70 { 71 int l=root*2,r=root*2+1; 72 int flag1=1; 73 if(l<=n&&(a[l]>=a[root]||!is_BST1(l))) 74 flag1=0; 75 int flag2=1; 76 if(r<=n&&(a[r]<=a[root]||!is_BST1(r))) 77 flag2=0; 78 return flag1&&flag2; 79 } 80 bool is_BST2(int root) 81 { 82 int l=root*2,r=root*2+1; 83 int flag1=1; 84 if(l<=n&&(a[l]<=a[root]||!is_BST2(l))) 85 flag1=0; 86 int flag2=1; 87 if(r<=n&&(a[r]>=a[root]||!is_BST2(r))) 88 flag2=0; 89 return flag1&&flag2; 90 } 91 int main() 92 { 93 int t; 94 scanf("%d",&t); 95 for(int c=1;c<=t;c++) 96 { 97 scanf("%d",&n); 98 for(int i=1; i<=n; i++) 99 scanf("%d",&a[i]); 100 int flag1,flag2; 101 flag1=is_Heap1(1)||is_Heap2(1); 102 flag2=is_BST1(1)||is_BST2(1); 103 printf("Case #%d: ",c); 104 if(flag1&&flag2) 105 printf("Both\n"); 106 else if((flag1||flag2)==0) 107 printf("Neither\n"); 108 else if(flag1==1) 109 printf("Heap\n"); 110 else printf("BST\n"); 111 } 112 return 0; 113 }
CDOJ 483 Data Structure Problem DFS
标签:
原文地址:http://www.cnblogs.com/diang/p/4746674.html