标签:
Time Limit: 2 second(s) | Memory Limit: 32 MB |
In a city there are n voters, and m people formed the Govt. council. The council members are numbered from 1 to m. Now everyone is complaining that the council is biased. So, they made a plan. The plan is that the voters are given a chance to vote again to form the new council. A vote will be like ±i ±j. ‘+‘ means the voter wants that member to be in the council, ‘-‘ means the voter doesn‘t want the member to be in the council. For example, there are 4 voters, they voted like
+1 -3 the voter wants member 1 to be kept in the council or member 3 to be thrown out
+2 +3 the voter wants member 2 to be kept in the council or member 3 to be kept in the council
-1 -2 the voter wants member 1 to be thrown out or member 2 to be thrown out
-4 +1 the voter wants member 4 to be thrown out or member 1 to be kept in the council
A voter will be satisfied if at least one of his wishes becomes true. Now your task is to form the council such that all the voters are happy.
Input starts with an integer T (≤ 20), denoting the number of test cases.
Each case starts with a line containing two integers n (1 ≤ n ≤ 20000) and m (1 ≤ m ≤ 8000). Each of the next n lines contains a vote in the form ±i ±j (1 ≤ i, j ≤ m).
For each case, print the case number and ‘Yes‘ if a solution exists, or ‘No‘ if there is no solution. Then if the result is yes, print another line containing the number of members in the council followed by the members in ascending order. And print a single space between two numbers. There can be many solutions. Any valid one will do.
Sample Input |
Output for Sample Input |
3 4 3 +1 +3 +2 -1 +2 -3 -1 -2 4 2 +1 -2 +1 +2 -1 -2 -1 +2 1 3 +1 -3 |
Case 1: Yes 2 2 3 Case 2: No Case 3: Yes 0 |
This is a special judge problem. Wrong output format may cause wrong answer.
#include <cstdio> #include <cstring> #include <queue> #include <stack> #include <vector> #include <algorithm> #define MAXN 16000+10 #define MAXM 40000+10 using namespace std; struct Edge { int from, to, next; }; Edge edge[MAXM]; int head[MAXN], edgenum; int low[MAXN], dfn[MAXN]; int sccno[MAXN], scc_cnt; int dfs_clock; stack<int> S; bool Instack[MAXN]; int N, M; void init() { edgenum = 0; memset(head, -1, sizeof(head)); } void addEdge(int u, int v) { Edge E = {u, v, head[u]}; edge[edgenum] = E; head[u] = edgenum++; } void getMap() { int a, b; while(M--) { scanf("%d%d", &a, &b); if(a > 0 && b > 0)//a 和 b 至少一个留下 { addEdge(b + N, a); addEdge(a + N, b); } else if(a > 0 && b < 0)//a留 和 b走 至少成立一个 { b = -b; addEdge(b, a); addEdge(a + N, b + N); } else if(a < 0 && b > 0)//a走 和 b留 至少成立一个 { a = -a; addEdge(b + N, a + N); addEdge(a, b); } else//a 和 b 至少走一个 { a = -a, b = -b; addEdge(b, a + N); addEdge(a, b + N); } } } void tarjan(int u, int fa) { int v; low[u] = dfn[u] = ++dfs_clock; S.push(u); Instack[u] = true; for(int i = head[u]; i != -1; i = edge[i].next) { v = edge[i].to; if(!dfn[v]) { tarjan(v, u); low[u] = min(low[u], low[v]); } else if(Instack[v]) low[u] = min(low[u], dfn[v]); } if(low[u] == dfn[u]) { scc_cnt++; for(;;) { v = S.top();S.pop(); Instack[v] = false; sccno[v] = scc_cnt; if(v == u) break; } } } void find_cut(int l, int r) { memset(low, 0, sizeof(low)); memset(dfn, 0, sizeof(dfn)); memset(sccno, 0, sizeof(sccno)); memset(Instack, false, sizeof(Instack)); dfs_clock = scc_cnt = 0; for(int i = l; i <= r; i++) if(!dfn[i]) tarjan(i, -1); } vector<int> G[MAXN]; int in[MAXN]; void suodian()//反向建图 { for(int i = 1; i <= scc_cnt; i++) G[i].clear(), in[i] = 0; for(int i = 0; i < edgenum; i++) { int u = sccno[edge[i].from]; int v = sccno[edge[i].to]; if(u != v) G[v].push_back(u), in[u]++; } } int k = 1; int fp[MAXN];//建立SCC到SCC的映射 int color[MAXN];//染色 void toposort() { memset(color, -1, sizeof(color)); queue<int> Q; for(int i = 1; i <= scc_cnt; i++) if(in[i] == 0) Q.push(i); while(!Q.empty()) { int u = Q.front(); Q.pop(); if(color[u] == -1) { color[u] = 1; color[fp[u]] = 0; } for(int i = 0; i < G[u].size(); i++) { int v = G[u][i]; if(--in[v] == 0) Q.push(v); } } } void solve() { printf("Case %d: ", k++); for(int i = 1; i <= N; i++) { if(sccno[i] == sccno[i+N]) { printf("No\n"); return ; } else { fp[sccno[i]] = sccno[i+N]; fp[sccno[i+N]] = sccno[i]; } } printf("Yes\n"); suodian(); toposort();//反向拓扑 int ans = 0; for(int i = 1; i <= N; i++) { if(color[sccno[i]] == 1) ans++; } printf("%d", ans); for(int i = 1; i <= N; i++) { if(color[sccno[i]] == 1) printf(" %d", i); } printf("\n"); } int main() { int t; scanf("%d", &t); while(t--) { scanf("%d%d", &M, &N); init(); getMap(); find_cut(1, N); solve(); } return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。
Light oj 1251 - Forming the Council 【2-sat】【判断是否存在可行解 + 反向拓扑输出可行解】
标签:
原文地址:http://blog.csdn.net/chenzhenyu123456/article/details/47828877