码迷,mamicode.com
首页 > 其他好文 > 详细

bzoj-1467 clever Y / JDFZ-2940 EXBSGS

时间:2015-08-21 19:33:51      阅读:170      评论:0      收藏:0      [点我收藏+]

标签:bzoj   bsgs   exbsgs   

题意:

求解方程A^x=B (mod C)在[0,C)中的最小解;

C<=10^9;


题解:
此题C并不是质数,所以要用一种叫做EXBSGS的东西来解;

考虑BSGS的适用条件,主要是在于A^k也就是A不一定对于C有逆元;

那么约下去一些怎么样?

令d=gcd(A,C),那么一定有 d|B或者x=0,B=1;

x=0的情况比较特殊,直接特判即可;

那么若没有d|B则无解;

而如果同时除一个B之后,方程即为A/d*A^(x-1)=B/d (mod C/d);

多次执行该操作,直到gcd(A,C/d1*d2*d3*...*dk)=1为止;

设P=d1*d2*d3*...*dk这一大坨;

此时方程为(A^k/P)*A^(x-k)=B/P (mod C/P);

这个方程是支持BSGS的!直接套用即可;

然后解决了?

等等,x-k为负怎么办?

...暴力啊!因为C每次都除一个数,所以最多除不过logC次;

枚举到logC判断是否出解就可以了,也顺便把之前x=0的特判统一了;

时间复杂度O(logC+√C/P);


代码:

//代码是JDFZ的代码,多了关于C==1的特判;


#include<math.h>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define N 140142
using namespace std;
typedef long long ll;
struct Hash_Set
{
    ll head[N], next[N], X[N], val[N], tot;
    void clear()
    {
        memset(head, 0, sizeof(head));
        memset(next, 0, sizeof(next));
        memset(val, -1, sizeof(val));
        memset(X, 0, sizeof(X));
        tot = 0;
    }
    ll& operator [](ll x)
    {
        ll index = x%N;
        for (ll i = head[index]; i; i = next[i])
        {
            if (X[i] == x)
                return val[i];
        }
        next[++tot] = head[index];
        head[index] = tot;
        X[tot] = x;
        return val[tot];
    }
}hash;
ll pow(ll x, ll y, ll mod)
{
    ll ret = 1;
    while (y)
    {
        if (y & 1)
            ret = ret*x%mod;
        x = x*x%mod;
        y >>= 1;
    }
    return ret;
}
ll gcd(ll a, ll b)
{
    ll t = a%b;
    while (t)
    {
        a = b, b = t;
        t = a%b;
    }
    return b;
}
void exgcd(ll a, ll b, ll &x, ll &y)
{
    if (!b)
        x = 1, y = 0;
    else
    {
        exgcd(b, a%b, y, x);
        y -= a / b*x;
    }
}
ll inv(ll t, ll mod)
{
    ll x, y;
    exgcd(t, mod, x, y);
    return (x%mod + mod) % mod;
}
ll BSGS(ll A, ll B, ll C)
{
    hash.clear();
    ll bk = ceil(sqrt(C)), i, j, k, D, temp;
    for (i = 0, D = 1; i < bk; i++, D = D*A%C)
    {
        if (hash[D] == -1)
            hash[D] = i;
    }
    temp = inv(D, C);
    for (i = 0, k = B; i <= bk; i++, k = k*temp%C)
    {
        if (hash[k] != -1)
            return i*bk + hash[k];
    }
    return -1;
}
ll EXBSGS(ll A, ll B, ll C)
{
    if(C==1)
    {
        if(!B)  return 0;
        else    return -1;
    }
    ll lg = ceil(log(C*1.0) / log(2)), i, k, mod;
    for (i = 0, k = 1; i <= lg; i++, k = k*A%C)
    {
        if (k == B)
            return i;
    }
    i = 0, mod = C;
    while ((k = gcd(A, mod)) != 1)
    {
        if (B%k)    return -1;
        B /= k, mod /= k;
        i++;
    }
    ll ret = BSGS(A, B*inv(pow(A, i, mod)*inv(C / mod, mod) % mod, mod) % mod, mod);
    if (ret != -1)
        return ret + i;
    else
        return -1;
}
int main()
{
    ll c, T, A, B, C, ans;
    scanf("%lld", &T);
    for (c = 1; c <= T; c++)
    {
        scanf("%lld%lld%lld", &A, &C, &B);
        ans = EXBSGS(A, B, C);
        printf("%lld\n", ans);
    }
    return 0;
}
 




bzoj-1467 clever Y / JDFZ-2940 EXBSGS

标签:bzoj   bsgs   exbsgs   

原文地址:http://blog.csdn.net/ww140142/article/details/47837521

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!