opencv 特征点的提取和匹配
1. 当中的数据结构
KeyPoint这数据结构中有如下数据结构:
class KeyPoint
{ Point2f pt; //坐标
float size; //特征点邻域直径
float angle; //特征点的方向,值为[零,三百六十),负值表示不使用
float response;
int octave; //特征点所在的图像金字塔的组
int class_id; //用于聚类的id
angle:角度,表示关键点的方向,SIFT算法通过对关键点周围邻域进行梯度运算,求得该点方向。-1为初值。
class_id:当要对图片进行分类时,我们可以用class_id对每个特征点进行区分,未设定时为-1
octave:代表是从金字塔哪一层提取的得到的数据。
pt:关键点点的坐标(pt.x pt.y)
response:响应程度,代表该点强壮大小。response代表着该关键点how good,更确切的说,是该点角点的程度。瞬间明白。
size:该点直径的大小
注意:keypoint只是保存了opencv的sift库检测到的特征点的一些基本信息,也就上面所说的这些,但sift所提取出来的特征向量其实不是在这个里面,特征向量通过SiftDescriptorExtractor 提取,结果放在一个Mat的数据结构中。新版的SIFT可以直接提取。
DMATCH 数据结构:
struct DMatch
{ //三个构造函数
DMatch():
queryIdx(-1),trainIdx(-1),imgIdx(-1),distance(std::numeric_limits::max()) {}
DMatch(int _queryIdx, int _trainIdx, float _distance ) :
queryIdx( _queryIdx),trainIdx( _trainIdx), imgIdx(-1),distance( _distance) {}
DMatch(int _queryIdx, int _trainIdx, int _imgIdx, float _distance ) :
queryIdx(_queryIdx), trainIdx( _trainIdx), imgIdx( _imgIdx),distance( _distance) {}
int queryIdx; //此匹配对应的查询图像的特征描述子索引(输入图1)
int trainIdx; //此匹配对应的训练(模板)图像的特征描述子索引(输入图2)
int imgIdx; //训练图像的索引(若有多个)
float distance; //两个特征向量之间的欧氏距离,越小表明匹配度越高。
booloperator < (const DMatch &m) const;
};
2. 各种的特征点
#include <iostream>
#include "opencv2/opencv.hpp"
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/legacy/legacy.hpp" // 暴力匹配的头文件
#include "opencv2/nonfree/nonfree.hpp"
#include <iostream>
#include <vector>
#include "cv_import_static_lib.h"
using namespace std;
using namespace cv;
void main(){
Mat img_1 = imread("E:\\3Dtestdata\\3.jpg");
Mat img_2 = imread("E:\\3Dtestdata\\4.jpg");
if (!img_1.data || !img_2.data)
{
cout << "error reading images " << endl;
return ;
}
vector<KeyPoint> keyPoints_1, keyPoints_2;
Mat descriptors_1, descriptors_2;
/*-----------------SIFT featrue Point----------------
SIFT sift;
sift(img_1, Mat(), keyPoints_1, descriptors_1);
sift(img_2, Mat(), keyPoints_2, descriptors_2);
*/
/*-----------------SURF featrue Point----------------
SURF surf;
surf(img_1, Mat(), keyPoints_1, descriptors_1);
surf(img_2, Mat(), keyPoints_2, descriptors_2);
//SurfDescriptorExtractor extrator; // another surf sift operation
//extrator.compute(img_1, keyPoints_1, descriptors_1);
//extrator.compute(img_2, keyPoints_2, descriptors_2);
*/
//-----------------ORB featrue Point----------------
ORB orb; // float Feature, can not use FlannBase Match.
orb(img_1, Mat(), keyPoints_1, descriptors_1);
orb(img_2, Mat(), keyPoints_2, descriptors_2);
/*-----------------ORB featrue Point----------------
MSER mesr;
*/
/*-----------------FAST featrue Point----------------
FastFeatureDetector fast1(100); // 检测的阈值为40
FastFeatureDetector fast2(100);
fast1.detect(img_1, keyPoints_1);
fast2.detect(img_2, keyPoints_2);
//SurfDescriptorExtractor extrator; // another surf sift operation
//extrator.compute(img_1, keyPoints_1, descriptors_1);
//extrator.compute(img_2, keyPoints_2, descriptors_2);
OrbDescriptorExtractor extrator;
extrator.compute(img_1, keyPoints_1, descriptors_1);
extrator.compute(img_2, keyPoints_2, descriptors_2);
*/
BruteForceMatcher<HammingLUT> matcher;// orb 等float型的
//FlannBasedMatcher matcher; // 只能 对uchar的点进行匹配
vector< DMatch > matches;
matcher.match(descriptors_1, descriptors_2, matches);
double max_dist = 0; double min_dist = 100;
//-- Quick calculation of max and min distances between keypoints
for (int i = 0; i < descriptors_1.rows; i++)
{
double dist = matches[i].distance;
if (dist < min_dist) min_dist = dist;
if (dist > max_dist) max_dist = dist;
}
cout<<"-- Max dist :"<< max_dist<<endl;
cout<<"-- Min dist :"<< min_dist<<endl;
//-- Draw only "good" matches (i.e. whose distance is less than 0.6*max_dist )
//-- PS.- radiusMatch can also be used here.
vector< DMatch > good_matches;
for (int i = 0; i < descriptors_1.rows; i++)
{
if (matches[i].distance < 0.6*max_dist)
{
good_matches.push_back(matches[i]);
}
}
// vector<KeyPoint> m_LeftKey;
// vector<KeyPoint> m_RightKey;
// vector<DMatch> m_Matches;
// 以上三个变量已经被计算出来,分别是提取的关键点及其匹配,下面直接计算F
// 分配空间
int ptCount = (int)matches.size();
Mat p1(ptCount, 2, CV_32F);
Mat p2(ptCount, 2, CV_32F);
// 把Keypoint转换为Mat
Point2f pt;
for (int i = 0; i<ptCount; i++)
{
pt = keyPoints_1[matches[i].queryIdx].pt;
p1.at<float>(i, 0) = pt.x;
p1.at<float>(i, 1) = pt.y;
pt = keyPoints_2[matches[i].trainIdx].pt;
p2.at<float>(i, 0) = pt.x;
p2.at<float>(i, 1) = pt.y;
}
// 用RANSAC方法计算 基本矩阵F
Mat m_Fundamental;
vector<uchar> m_RANSACStatus;
m_Fundamental = findFundamentalMat(p1, p2, m_RANSACStatus, FM_RANSAC);//?????????????????
// 计算野点个数
int OutlinerCount = 0;
for (int i = 0; i<ptCount; i++)
{
if (m_RANSACStatus[i] == 0) // 状态为0表示野点
{
OutlinerCount++;
}
}
// 计算内点
vector<Point2f> m_LeftInlier;
vector<Point2f> m_RightInlier;
vector<DMatch> m_InlierMatches;
// 上面三个变量用于保存内点和匹配关系
int InlinerCount = ptCount - OutlinerCount;
m_InlierMatches.resize(InlinerCount);
m_LeftInlier.resize(InlinerCount);
m_RightInlier.resize(InlinerCount);
InlinerCount = 0;
for (int i = 0; i<ptCount; i++)
{
if (m_RANSACStatus[i] != 0)
{
m_LeftInlier[InlinerCount].x = p1.at<float>(i, 0);
m_LeftInlier[InlinerCount].y = p1.at<float>(i, 1);
m_RightInlier[InlinerCount].x = p2.at<float>(i, 0);
m_RightInlier[InlinerCount].y = p2.at<float>(i, 1);
m_InlierMatches[InlinerCount].queryIdx = InlinerCount;
m_InlierMatches[InlinerCount].trainIdx = InlinerCount;
InlinerCount++;
}
}
// 把内点转换为drawMatches可以使用的格式
vector<KeyPoint> key1(InlinerCount);
vector<KeyPoint> key2(InlinerCount);
KeyPoint::convert(m_LeftInlier, key1);
KeyPoint::convert(m_RightInlier, key2);
// 显示计算F过后的内点匹配
//Mat m_matLeftImage;
//Mat m_matRightImage;
// 以上两个变量保存的是左右两幅图像
Mat OutImage;
drawMatches(img_1, key1, img_2, key2, m_InlierMatches, OutImage);
//stereoRectifyUncalibrated();
Mat img_matches;
drawMatches(img_1, keyPoints_1, img_2, keyPoints_2,
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);
imwrite("FASTResult.jpg", img_matches);
imshow("Match", img_matches);
imwrite("FmatrixResult.jpg", OutImage);
imshow("Match2", OutImage);
waitKey(0);
return;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
原文地址:http://blog.csdn.net/ikerpeng/article/details/47972959