码迷,mamicode.com
首页 > 其他好文 > 详细

Sqoop

时间:2015-08-26 00:18:37      阅读:229      评论:0      收藏:0      [点我收藏+]

标签:

一简介


Sqoop是一个用来将Hadoop和关系型数据库中的数据相互转移的工具,可以将一个关系型数据库(例如 : MySQL ,Oracle ,Postgres等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。


二特点


Sqoop中一大亮点就是可以通过hadoop的mapreduce把数据从关系型数据库中导入数据到HDFS。


三 Sqoop 命令


Sqoop大约有13种命令,和几种通用的参数(都支持这13种命令),这里先列出这13种命令。

接 着列出Sqoop的各种通用参数,然后针对以上13个命令列出他们自己的参数。Sqoop通用参数又分Common arguments,Incremental import arguments,Output line formatting arguments,Input parsing arguments,Hive arguments,HBase arguments,Generic Hadoop command-line arguments,下面一一说明:

1.Common arguments

通用参数,主要是针对关系型数据库链接的一些参数


四  sqoop命令举例


1)列出mysql数据库中的所有数据库

sqoop list-databases –connect jdbc:mysql://localhost:3306/ –username root –password 123456



2)连接mysql并列出test数据库中的表

sqoop list-tables –connect jdbc:mysql://localhost:3306/test –username root –password 123456

命令中的test为mysql数据库中的test数据库名称 username password分别为mysql数据库的用户密码



3)将关系型数据的表结构复制到hive中,只是复制表的结构,表中的内容没有复制过去。

sqoop create-hive-table –connect jdbc:mysql://localhost:3306/test

–table sqoop_test –username root –password 123456 –hive-table

test

其中 –table sqoop_test为mysql中的数据库test中的表 –hive-table

test 为hive中新建的表名称



4)从关系数据库导入文件到hive中

sqoop import –connect jdbc:mysql://localhost:3306/zxtest –username

root –password 123456 –table sqoop_test –hive-import –hive-table

s_test -m 1



5)将hive中的表数据导入到mysql中,在进行导入之前,mysql中的表

hive_test必须已经提前创建好了。

sqoop export –connect jdbc:mysql://localhost:3306/zxtest –username

root –password root –table hive_test –export-dir

/user/hive/warehouse/new_test_partition/dt=2012-03-05



6)从数据库导出表的数据到HDFS上文件

./sqoop import –connect

jdbc:mysql://10.28.168.109:3306/compression –username=hadoop

–password=123456 –table HADOOP_USER_INFO -m 1 –target-dir

/user/test



7)从数据库增量导入表数据到hdfs中

./sqoop import –connect jdbc:mysql://10.28.168.109:3306/compression

–username=hadoop –password=123456 –table HADOOP_USER_INFO -m 1

–target-dir /user/test  –check-column id –incremental append

–last-value 3


五 Sqoop原理(以import为例)


Sqoop在import时,需要制定split-by参数。Sqoop根据不同的split-by参数值来进行切 分,然后将切分出来的区域分配到不同map中。每个map中再处理数据库中获取的一行一行的值,写入到HDFS中。同时split-by根据不同的参数类 型有不同的切分方法,如比较简单的int型,Sqoop会取最大和最小split-by字段值,然后根据传入的num-mappers来确定划分几个区 域。 比如select max(split_by),min(split-by) from得到的max(split-by)和min(split-by)分别为1000和1,而num-mappers为2的话,则会分成两个区域 (1,500)和(501-100),同时也会分成2个sql给2个map去进行导入操作,分别为select XXX from table where split-by>=1 and split-by<500和select XXX from table where split-by>=501 and split-by<=1000。最后每个map各自获取各自SQL中的数据进行导入工作。


六mapreduce job所需要的各种参数在Sqoop中的实现


1) InputFormatClass

com.cloudera.sqoop.mapreduce.db.DataDrivenDBInputFormat


2) OutputFormatClass

1)TextFile

com.cloudera.sqoop.mapreduce.RawKeyTextOutputFormat

2)SequenceFile

org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat

3)AvroDataFile

com.cloudera.sqoop.mapreduce.AvroOutputFormat



3)Mapper

1)TextFile

com.cloudera.sqoop.mapreduce.TextImportMapper                 

2)SequenceFile

com.cloudera.sqoop.mapreduce.SequenceFileImportMapper        


3)AvroDataFile

com.cloudera.sqoop.mapreduce.AvroImportMapper


4)taskNumbers

1)mapred.map.tasks(对应num-mappers参数)   

2)job.setNumReduceTasks(0);


这里以命令行:import –connect jdbc:mysql://localhost/test  –username root –password 123456 –query “select sqoop_1.id as foo_id, sqoop_2.id as bar_id from sqoop_1 ,sqoop_2  WHERE $CONDITIONS” –target-dir /user/sqoop/test -split-by sqoop_1.id   –hadoop-home=/home/hdfs/hadoop-0.20.2-CDH3B3  –num-mappers 2



1)设置Input

DataDrivenImportJob.configureInputFormat(Job job, String tableName,String tableClassName, String splitByCol)


a)DBConfiguration.configureDB(Configuration conf, String driverClass,     String dbUrl, String userName, String passwd, Integer fetchSize)

1).mapreduce.jdbc.driver.class com.mysql.jdbc.Driver

2).mapreduce.jdbc.url  jdbc:mysql://localhost/test              

3).mapreduce.jdbc.username  root

4).mapreduce.jdbc.password  123456

5).mapreduce.jdbc.fetchsize -2147483648


b)DataDrivenDBInputFormat.setInput(Job job,Class<? extends DBWritable> inputClass, String inputQuery, String inputBoundingQuery)

1)job.setInputFormatClass(DBInputFormat.class);                 

2)mapred.jdbc.input.bounding.query SELECT MIN(sqoop_1.id), MAX(sqoop_2.id) FROM (select sqoop_1.id as foo_id, sqoop_2.id as bar_id from sqoop_1 ,sqoop_2  WHERE  (1 = 1) ) AS t1

3)job.setInputFormatClass(com.cloudera.sqoop.mapreduce.db.DataDrivenDBInputFormat.class);

4)mapreduce.jdbc.input.orderby sqoop_1.id

c)mapreduce.jdbc.input.class QueryResult

d)sqoop.inline.lob.length.max 16777216


2)设置Output

ImportJobBase.configureOutputFormat(Job job, String tableName,String tableClassName)

a)job.setOutputFormatClass(getOutputFormatClass());               

b)FileOutputFormat.setOutputCompressorClass(job, codecClass);

c)SequenceFileOutputFormat.setOutputCompressionType(job,CompressionType.BLOCK);

d)FileOutputFormat.setOutputPath(job, outputPath);



3)设置Map

DataDrivenImportJob.configureMapper(Job job, String tableName,String tableClassName)

     a)job.setOutputKeyClass(Text.class);
     b)job.setOutputValueClass(NullWritable.class);
c)job.setMapperClass(com.cloudera.sqoop.mapreduce.TextImportMapper);


4)设置task number

JobBase.configureNumTasks(Job job)

mapred.map.tasks 4

job.setNumReduceTasks(0);


七 大概流程


1.读取要导入数据的表结构,生成运行类,默认是QueryResult,打成jar包,然后提交给Hadoop


2.设置好job,主要也就是设置好以上第六章中的各个参数


3.这里就由Hadoop来执行MapReduce来执行Import命令了,


1)首先要对数据进行切分,也就是DataSplit

DataDrivenDBInputFormat.getSplits(JobContext job)


2)切分好范围后,写入范围,以便读取

DataDrivenDBInputFormat.write(DataOutput output) 这里是lowerBoundQuery and  upperBoundQuery


3)读取以上2)写入的范围

DataDrivenDBInputFormat.readFields(DataInput input)


4)然后创建RecordReader从数据库中读取数据

DataDrivenDBInputFormat.createRecordReader(InputSplit split,TaskAttemptContext context)


5)创建Map

TextImportMapper.setup(Context context)


6)RecordReader一行一行从关系型数据库中读取数据,设置好Map的Key和Value,交给Map

DBRecordReader.nextKeyValue()


7)运行map

TextImportMapper.map(LongWritable key, SqoopRecord val, Context context)

最后生成的Key是行数据,由QueryResult生成,Value是NullWritable.get()



Sqoop

标签:

原文地址:http://my.oschina.net/loveryuan/blog/497069

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!