码迷,mamicode.com
首页 > 其他好文 > 详细

hiho 光棍节

时间:2015-08-26 15:25:48      阅读:130      评论:0      收藏:0      [点我收藏+]

标签:

描述

尽管付出了种种努力,jzp还是得过光棍节。

jzp非常不爽,但也无能为力,只能够哀叹起来他的命运。他想到了一位长者的人生经验:“人的一生,不光要靠自我奋斗,也要考虑历史的进程”。

他终于明白自己只是时运不济,所以又继续开始努力。终于在圣诞节当天把到了妹子。

jzp从此过上了快乐的现充生活,在圣诞节当天,他还和妹子玩起了有趣的游戏:

jzp的家里有一棵非常大的圣诞树,可以看成是一个n个点的无向联通无环图。每个点上都有一个正整数,JZP和妹子每次都会选择树上的一条路径,

这条路径的权值被定义为路径上所有点上数的最大公约数,JZP可以得到这个权值的分数。

JZP玩了一会儿有点腻了,他想知道对于每种可能的权值x,权值为x的不同路径的数量(a到b的路径和b到a的路径算作一种,a到a自身也算作一条路径。)

输入

第一行一个整数n(1<=n<=105)表示圣诞树的大小,点从1开始标号。

接下来一行n个整数用单个空格隔开,第i个表示第i个点上的数。(数都在1到105之间)。

接下来n-1行,每行两个数a和b,表示a和b之间有一条边。

输出

令C(x)表示权值为x的路径的个数。

从小到大输出对于所有C(x)>0的x,输出一行两个数x和C(x),用空格隔开。

 

样例输入

20
2 4 2 4 2 4 2 20 20 12 12 12 2 12 2 4 4 2 12 2
1 2
1 3
1 4
2 5
3 6
1 7
6 8
2 9
6 10
5 11
4 12
11 13
10 14
3 15
9 16
7 17
4 18
4 19
16 20

样例输出

2 186
4 16
12 6
20 2


首先考虑将问题转化成计算有多少路径的gcd是k的倍数,然后容斥计算出答案。
注意一条路径的gcd是k的倍数等同于路径每条边gcd的gcd,那么我们预处理出对于每个k有那些边符合要求,就可以计算了。
枚举k,将符合条件的边建出来,可以用个并查集,在合并时顺便计算答案。
需要预处理出每个k的因数,暴力分解会T。
技术分享
#include<cstdio>
#include<cctype>
#include<queue>
#include<cmath>
#include<cstring>
#include<algorithm>
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define ren for(int i=first[x];i;i=Next[i])
using namespace std;
inline int read() {
    int x=0,f=1;char c=getchar();
    for(;!isdigit(c);c=getchar()) if(c==-) f=-1;
    for(;isdigit(c);c=getchar()) x=x*10+c-0;
    return x*f;
}
typedef long long ll;
const int maxn=100010;
int first2[maxn],Next2[maxn*20],id2[maxn*20],tot2;
void AddP(int p,int v) {id2[++tot2]=v;Next2[tot2]=first2[p];first2[p]=tot2;}
int first[maxn],Next[maxn*20],id[maxn*20],tot;
void AddN(int p,int v) {id[++tot]=v;Next[tot]=first[p];first[p]=tot;}
int n,A[maxn],u[maxn],v[maxn],pa[maxn],sz[maxn],S[maxn<<1];
int gcd(int a,int b) {return !b?a:gcd(b,a%b);}
int findset(int x) {return pa[x]==x?x:findset(pa[x]);}
ll ans[maxn],res;
void merge(int a,int b) {
    int x=findset(a),y=findset(b);
    if(x==y) return;
    res+=(ll)sz[x]*sz[y];
    sz[x]+=sz[y];pa[y]=x;
}
int main() {
    n=read();
    rep(i,1,n) A[i]=read(),pa[i]=i,sz[i]=1;
    rep(i,1,100000) for(int j=i;j<=100000;j+=i) AddP(j,i);
    rep(i,1,n-1) {
        u[i]=read();v[i]=read();
        int x=gcd(A[u[i]],A[v[i]]);
        for(int j=first2[x];j;j=Next2[j]) AddN(id2[j],i);
    }
    dwn(x,100000,1) {
        res=0;int cnt=0;
        ren {
            merge(u[id[i]],v[id[i]]);
            S[++cnt]=u[id[i]];S[++cnt]=v[id[i]];
        }
        rep(i,1,cnt) pa[S[i]]=S[i],sz[S[i]]=1;
        ans[x]=res;
        for(int j=2*x;j<=100000;j+=x) ans[x]-=ans[j];
    }
    rep(i,1,n) ans[A[i]]++;
    rep(i,1,100000) if(ans[i]) printf("%d %lld\n",i,ans[i]);
    return 0;
}
View Code

 

hiho 光棍节

标签:

原文地址:http://www.cnblogs.com/wzj-is-a-juruo/p/4760223.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!