| Time Limit: 1000MS | Memory Limit: Unknown | 64bit IO Format: %lld & %llu |
Description
I hope you know the beautiful Union-Find structure. In this problem, you‘re to implement something similar, but not identical.
The data structure you need to write is also a collection of disjoint sets, supporting 3 operations:
1 p q
Union the sets containing p and q. If p and q are already in the same set, ignore this command.
2 p q
Move p to the set containing q. If p and q are already in the same set, ignore this command
3 p
Return the number of elements and the sum of elements in the set containing p.
Initially, the collection contains n sets: {1}, {2}, {3}, ..., {n}.
There are several test cases. Each test case begins with a line containing two integers n and m (1<=n,m<=100,000), the number of integers, and the number of commands. Each of the next m lines contains a command. For every operation, 1<=p,q<=n. The input is terminated by end-of-file (EOF). The size of input file does not exceed 5MB.
For each type-3 command, output 2 integers: the number of elements and the sum of elements.
5 7 1 1 2 2 3 4 1 3 5 3 4 2 4 1 3 4 3 3
3 12 3 7 2 8
Initially: {1}, {2}, {3}, {4}, {5}
Collection after operation 1 1 2: {1,2}, {3}, {4}, {5}
Collection after operation 2 3 4: {1,2}, {3,4}, {5} (we omit the empty set that is produced when taking out 3 from {3})
Collection after operation 1 3 5: {1,2}, {3,4,5}
Collection after operation 2 4 1: {1,2,4}, {3,5}
带删除的并查集.
操作2实际上是将p从原来的集合中删除,再加入到q所在的集合中。
并查集没有删除的操作,于是换个思路,让p点在其原来的集合中的影响为0,在开辟一个新的节点作为编号为p的节点,加入q所在集合。
用id[i]=ii代表数字i当前的位置,每次删除把id[i]指向其他位置,原来的位置舍去。
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
const int MAXN = 200000+100;
int parent[MAXN];
int cnt[MAXN];
int sum[MAXN];
int n, m;
int dex;
int id[MAXN];
void make_set()
{
dex = n;
for (int i = 0; i <= n; i++)
{
parent[i] = i;
cnt[i] = 1;
sum[i] = i;
id[i] = i;
}
}
int find_set(int t)
{
if (parent[t] == t)
return t;
else
return parent[t] = find_set(parent[t]);
}
void union_set(int a, int b)
{
int t1 = find_set(a);
int t2 = find_set(b);
if (t1 != t2)
{
parent[t2]=t1;
cnt[t1] += cnt[t2];
sum[t1] += sum[t2];
}
}
void move(int a)
{
int p = find_set(id[a]);
cnt[p]--;
sum[p] -= a; //消除该位置的点在原来集合中的影响
id[a] = ++dex; //开辟新的位置表示这个编号的点
parent[dex] = dex;
cnt[dex] = 1;
sum[dex] = a;
}
int main()
{
while (scanf("%d%d", &n, &m) != EOF)
{
make_set();
int op;
int a, b;
while (m--)
{
scanf("%d", &op);
if (op == 1)
{
scanf("%d%d", &a, &b);
union_set(id[a], id[b]);
}
else if (op == 2)
{
scanf("%d%d", &a, &b);
int t1 = find_set(id[a]);
int t2 = find_set(id[b]);
if (t1 != t2)
{
move(a); //从原来集合中移除
union_set(id[a], id[b]); //合并到新的集合中
}
}
else
{
scanf("%d", &a);
int p = find_set(id[a]);
printf("%d %d\n", cnt[p], sum[p]);
}
}
}
}版权声明:本文为博主原创文章,未经博主允许不得转载。
UVA - 11987 Almost Union-Find(带删除的并查集)
原文地址:http://blog.csdn.net/qq_18738333/article/details/48005681