码迷,mamicode.com
首页 > 其他好文 > 详细

655

时间:2014-05-04 19:18:36      阅读:389      评论:0      收藏:0      [点我收藏+]

标签:strong   c   rac   limit   inf   it   

$\bf命题2:$设正项级数$\sum\limits_{n = 1}^\infty {{a_n}} $收敛,则存在发散到正无穷大的数列$\left\{ {{b_n}} \right\}$,使得级数$\sum\limits_{n = 1}^\infty {{a_n}{b_n}} $仍收敛

证明:令${r_n} = \sum\limits_{m = n}^\infty {{a_m}} $,则${r_n} \to 0\left( {n \to \infty } \right)$,由于
\[\frac{{{a_n}}}{{\sqrt {{r_n}} }} = \frac{{{r_n} - {r_{n + 1}}}}{{\sqrt {{r_n}} }} = \frac{{\left( {\sqrt {{r_n}} + \sqrt {{r_{n + 1}}} } \right)\left( {\sqrt {{r_n}} - \sqrt {{r_{n + 1}}} } \right)}}{{\sqrt {{r_n}} }} \le 2\left( {\sqrt {{r_n}} - \sqrt {{r_{n + 1}}} } \right)\]
而级数$\sum\limits_{n = 1}^\infty {2\left( {\sqrt {{r_n}} - \sqrt {{r_{n + 1}}} } \right)}$收敛,所以由比较判别法知级数$\sum\limits_{n = 1}^\infty {\frac{{{a_n}}}{{\sqrt {{r_n}} }}} $收敛,取${b_n} = \frac{1}{{\sqrt {{r_n}} }}$,则命题成立

655,布布扣,bubuko.com

655

标签:strong   c   rac   limit   inf   it   

原文地址:http://www.cnblogs.com/ly758241/p/3706457.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!