标签:
Spark之命令
1.spark运行模式有4种:
a.local 多有用测试,
b. standalone:spark 集群模式,使用spark自己的调度方式。
c. Yarn: 对MapreduceV1升级的经典版本,支持spark。
d.Mesos:类似Yarn的资源调度框架,提供了有效的、跨分布式应用或框架的资源隔离和共享,可以运行hadoop、spark等框架
2.spark local 模式(shell )
Spark local模式(shell运行)
    windows:
       执行spark-shell.cmd
    Linux:
       执行spark-shell
    
     参数指定:
    ? MASTER=local[4]  ADD_JARS=code.jar ./spark-shell
    ? MASTER=spark://host:port
    ? 指定executor内存:export SPARK_MEM=25g
3. spark standalone 模式
Spark standalone加载数据(shell运行spark-shell)
     读取本地文件:
     var file = sc.textFile("/root/test.txt").collect
     加载远程hdfs文件:
     var files = sc.textFile("hdfs://192.168.2.2:8020/user/superman").collect
     (读取hdfs数据时使用的还是inputFormat)
       standalone WordCount
              sc.textFile("/root/test.txt").flatMap(_.split("\\t")).map(x=>(x,1))
.reduceByKey(_+_).collect
Spark standalone保存结果集数据
     保存数据到本地:
     result.saveAsTextFile("/root/tmp")   (tmp文件夹必须不存在)
     保存数据到远程hdfs文件:
     result.saveAsTextFile("hdfs://crxy165:8020/user/superman/tmp")
     (tmp文件夹必须不存在)
      设置输出结果集文件数量:
       result.repartition(1).saveAsTextFile
      任务提交
       spark-submit   (推荐)
       其它也可?,如sbt run, java -jar  等等
4.RDD,可恢复分布式数据集,弹性分布式数据集
标签:
原文地址:http://www.cnblogs.com/chaoren399/p/4761746.html