码迷,mamicode.com
首页 > 其他好文 > 详细

549565

时间:2014-05-04 19:12:48      阅读:361      评论:0      收藏:0      [点我收藏+]

标签:style   class   ext   color   width   int   

$\bf命题2:$设$f\left( x \right) \in C\left( { - \infty , + \infty } \right)$,令

fbubuko.com,布布扣nbubuko.com,布布扣(x)=bubuko.com,布布扣k=0bubuko.com,布布扣n?1bubuko.com,布布扣1bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣f(x+kbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣)bubuko.com,布布扣

证明:对任意$x \in \left[ {a,b} \right] \subset \left( { - \infty , + \infty } \right)$,有${f_n}\left( x \right)$一致收敛于$\int_0^1 {f\left( {x + t} \right)dt}$

证明:由$f\left( x \right) \in C\left( { - \infty , + \infty } \right)$知,$f\left( x \right) \in C\left[ {a,b} \right]$,则

由$\bf{Cantor定理}$知,$f\left( x \right)$在$\left[ {a,b} \right]$上一致连续,即对任意$\varepsilon > 0$,存在$\delta > 0$,使得对任意的$x,y \in \left[ {a,b} \right]$满足$\left| {x - y} \right|
< \delta $时,有

|f(x)?f(y)|<εbubuko.com,布布扣

取$N = \frac{1}{\delta }$,则当$n > N$时,对任意$x \in \left[ {a,b} \right]$,$t \in \left[ {\frac{k}{n},\frac{{k + 1}}{n}} \right]$,有
bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣(x+kbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣)?(x+t)bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣<δbubuko.com,布布扣

从而有

bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣f(x+kbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣)?f(x+t)bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣<εbubuko.com,布布扣

所以对任意$\varepsilon > 0$,存在$N = \frac{1}{\delta } > 0$,使得当$n > N$时,对任意$x \in \left[ {a,b} \right]$,有

bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣fbubuko.com,布布扣nbubuko.com,布布扣(x)?bubuko.com,布布扣1bubuko.com,布布扣0bubuko.com,布布扣f(x+t)dtbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣k=0bubuko.com,布布扣n?1bubuko.com,布布扣bubuko.com,布布扣k+1bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣kbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣[f(x+kbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣)?f(x+t)]dtbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣<εbubuko.com,布布扣

从而由函数列一致收敛的定义即证

$\bf注1:$$\int_0^1 {f\left( {x + t} \right)dt} {\rm{ = }}\sum\limits_{k = 0}^{n - 1} {\int_{\frac{k}{n}}^{\frac{{k + 1}}{n}} {f\left( {x + t} \right)dt} } $

549565,布布扣,bubuko.com

549565

标签:style   class   ext   color   width   int   

原文地址:http://www.cnblogs.com/ly758241/p/3706469.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!