Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: | Accepted: |
Description
We give the following inductive definition of a “regular brackets” sequence:
For instance, all of the following character sequences are regular brackets sequences:
(), [], (()), ()[], ()[()]
while the following character sequences are not:
(, ], )(, ([)], ([(]
Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤i1 < i2 < … < im ≤ n, ai1ai2 … aim is a regular brackets sequence.
Given the initial sequence ([([]])]
, the longest regular brackets subsequence is [([])]
.
Input
The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (
, )
, [
, and ]
; each input test will have length between 1 and 100, inclusive.
The end-of-file is marked by a line containing the word “end” and should not be processed.
Output
For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.
Sample Input
((())) ()()() ([]]) )[)( ([][][) end
Sample Output
6 6 4 0 6
代码中详解!!!
AC代码如下:
#include<iostream> #include<cstring> #include<algorithm> using namespace std; int dp[105][105]; char str[1005]; int main() { int i,j,o,t; while(cin>>str,str[0]!='e') { int l=strlen (str); for(i=0;i<l;i++) for(j=0;j<l;j++) dp[i][j]=0;//初始化状态 for(o=2;o<=l;o++)//枚举所有区间长度 { for(i=0;i<l-o+1;i++) { j=i+o-1;//控制[i,j]区间长度为o。 for(t=i;t<j;t++)//检索[i,j]中的满足条件的子区间 { dp[i][j]=max(dp[i][j],dp[i][t]+dp[t+1][j]);//更新子区间合成的区间最大值MAXXX if((str[i]=='('&&str[j]==')')||(str[i]=='['&&str[j]==']')) dp[i][j]=max(dp[i][j],dp[i+1][j-1]+2);//比较MAXXX与整体区间的相比谁大 } } } cout<<dp[0][l-1]<<endl; } return 0; }
POJ 2955 Brackets,布布扣,bubuko.com
原文地址:http://blog.csdn.net/hanhai768/article/details/37728699