题目大意:有N种东西,现已知每样东西的价值和数量,将N种东西分成两堆,且保证第一堆的价值不少于第二堆的前提下,使两堆的价值尽可能相等
解题思路:
考虑,由于第二堆的价值小于等于第一堆,也就是说第二堆的价值的最大值不能超过总价值的一般,把这个看成背包的容量,可以得到如下的状态转移方程
value[j]=max{value[j],value[j-facility[i].v]+facility[i].v}
代码如下:
# include <iostream> # include <algorithm> using namespace std; struct node { int v,m; }facility[10002]; int value[300002]; int main() { freopen("input.txt","r",stdin); int n; while((scanf("%d",&n)!=EOF) && n>=0) { int i,j,k; int sum=0; for(i=0;i<n;i++) { scanf("%d %d",&facility[i].v,&facility[i].m); sum=sum+facility[i].v*facility[i].m; } int half=sum/2; memset(value,0,sizeof(value)); for(i=0;i<n;i++) { for(j=1;j<=facility[i].m;j++) { for(k=half;k>=facility[i].v;k--) { if(value[k]<(value[k-facility[i].v]+facility[i].v)) { value[k]=value[k-facility[i].v]+facility[i].v; } } } } printf("%d %d\n",sum-value[half],value[half]); } return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。
原文地址:http://blog.csdn.net/fyy607/article/details/48028475