码迷,mamicode.com
首页 > 其他好文 > 详细

68

时间:2014-05-04 19:03:33      阅读:360      评论:0      收藏:0      [点我收藏+]

标签:style   class   ext   color   width   strong   

$\bf命题1:$设正项级数$\sum\limits_{n = 1}^\infty {{a_n}} $发散,且${s_n} = \sum\limits_{k = 1}^n {{a_k}} $,试讨论级数$\sum\limits_{n = 1}^\infty {\frac{{{a_n}}}{{{s_n}^\alpha }}} \ $的敛散性

证明:$\left( 1 \right)$当$\alpha = 1$时,由正项级数$\sum\limits_{n = 1}^\infty{{a_n}} $发散知,$\lim \limits_{n \to \infty } {s_n} = + \infty $且$\left\{ {{s_n}} \right\}$严格递增,于是

bubuko.com,布布扣k=mbubuko.com,布布扣nbubuko.com,布布扣abubuko.com,布布扣kbubuko.com,布布扣bubuko.com,布布扣sbubuko.com,布布扣kbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣1bubuko.com,布布扣sbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣k=mbubuko.com,布布扣nbubuko.com,布布扣abubuko.com,布布扣kbubuko.com,布布扣bubuko.com,布布扣=1bubuko.com,布布扣sbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣k=mbubuko.com,布布扣nbubuko.com,布布扣(sbubuko.com,布布扣kbubuko.com,布布扣?sbubuko.com,布布扣k?1bubuko.com,布布扣)bubuko.com,布布扣=1bubuko.com,布布扣sbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣(sbubuko.com,布布扣nbubuko.com,布布扣?sbubuko.com,布布扣m?1bubuko.com,布布扣)>1bubuko.com,布布扣sbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣(sbubuko.com,布布扣nbubuko.com,布布扣?sbubuko.com,布布扣mbubuko.com,布布扣)bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
即对任意$n > m > 0$,固定$m$,有
bubuko.com,布布扣k=mbubuko.com,布布扣nbubuko.com,布布扣abubuko.com,布布扣kbubuko.com,布布扣bubuko.com,布布扣sbubuko.com,布布扣kbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣>sbubuko.com,布布扣nbubuko.com,布布扣?sbubuko.com,布布扣mbubuko.com,布布扣bubuko.com,布布扣sbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

由$\lim \limits_{n \to \infty } {s_n} = + \infty $知,
limbubuko.com,布布扣nbubuko.com,布布扣sbubuko.com,布布扣nbubuko.com,布布扣?sbubuko.com,布布扣mbubuko.com,布布扣bubuko.com,布布扣sbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=limbubuko.com,布布扣nbubuko.com,布布扣(1?sbubuko.com,布布扣mbubuko.com,布布扣bubuko.com,布布扣sbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣)=1bubuko.com,布布扣

从而由极限的保号性知,存在$N > 0$,当$n > N$时,有

sbubuko.com,布布扣nbubuko.com,布布扣?sbubuko.com,布布扣mbubuko.com,布布扣bubuko.com,布布扣sbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣>1bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

即$\sum\limits_{k = m}^n {\frac{{{a_k}}}{{{s_k}}}} > \frac{1}{2}$,由$\bf{Cauchy收敛准则}$知,级数$\sum\limits_{n = 1}^\infty {\frac{{{a_n}}}{{{s_n}}}} $发散

$\left( 2 \right)$当$\alpha < 1$时,由$\lim \limits_{n \to \infty } {s_n} = + \infty $知,对任意$\varepsilon > 0$,存在$N > 0$,当$n > N$时,有

sbubuko.com,布布扣nbubuko.com,布布扣>εbubuko.com,布布扣

特别地,取$\varepsilon = 1$,则${s_n} > 1$,从而可知当$n > N$时,有
abubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣sbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣αbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣>abubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣sbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

而$\sum\limits_{n = 1}^\infty {\frac{{{a_n}}}{{{s_n}}}}$发散,由$\bf比较判别法$知,$\sum\limits_{n = 1}^\infty {\frac{{{a_n}}}{{{s_n}^\alpha }}} $发散

$\left( 3\right)$当$\alpha > 1$时,设$f\left( x \right) = {x^{1 - \alpha }}$,则由微分中值定理知,存在${\xi _n} \in \left( {{s_{n -1}},{s_n}} \right)$,使得

sbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣1?αbubuko.com,布布扣?sbubuko.com,布布扣n?1bubuko.com,布布扣bubuko.com,布布扣1?αbubuko.com,布布扣=(1?α)ξbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣?αbubuko.com,布布扣(sbubuko.com,布布扣nbubuko.com,布布扣?sbubuko.com,布布扣n?1bubuko.com,布布扣)bubuko.com,布布扣

从而可知
abubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣sbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣αbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣<ξbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣?αbubuko.com,布布扣(sbubuko.com,布布扣nbubuko.com,布布扣?sbubuko.com,布布扣n?1bubuko.com,布布扣)=1bubuko.com,布布扣α?1bubuko.com,布布扣bubuko.com,布布扣(sbubuko.com,布布扣n?1bubuko.com,布布扣bubuko.com,布布扣1?αbubuko.com,布布扣?sbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣1?αbubuko.com,布布扣)bubuko.com,布布扣
于是
0<bubuko.com,布布扣k=1bubuko.com,布布扣nbubuko.com,布布扣abubuko.com,布布扣kbubuko.com,布布扣bubuko.com,布布扣sbubuko.com,布布扣kbubuko.com,布布扣bubuko.com,布布扣αbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣abubuko.com,布布扣1bubuko.com,布布扣bubuko.com,布布扣sbubuko.com,布布扣1bubuko.com,布布扣bubuko.com,布布扣αbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣+1bubuko.com,布布扣α?1bubuko.com,布布扣bubuko.com,布布扣(sbubuko.com,布布扣1bubuko.com,布布扣bubuko.com,布布扣1?αbubuko.com,布布扣?sbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣1?αbubuko.com,布布扣)<αbubuko.com,布布扣α?1bubuko.com,布布扣bubuko.com,布布扣abubuko.com,布布扣1bubuko.com,布布扣bubuko.com,布布扣1?αbubuko.com,布布扣bubuko.com,布布扣

从而由正项级数收敛的基本定理知,级数$\sum\limits_{n = 1}^\infty {\frac{{{a_n}}}{{{s_n}^\alpha }}} $收敛

$\bf注1:$正项级数收敛的基本定理:正项级数收敛当且仅当其部分和数列有界

$\bf注2:$我们可得到下面命题:设正项级数$\sum\limits_{n = 1}^\infty {{a_n}} $发散,则存在收敛于$0$的正项数列$\left\{ {{b_n}} \right\}$,使得级数$\sum\limits_{n = 1}^\infty {{a_n}{b_n}} $仍发散

68,布布扣,bubuko.com

68

标签:style   class   ext   color   width   strong   

原文地址:http://www.cnblogs.com/ly758241/p/3706448.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!