标签:style class ext color width strong
$\bf命题1:$设正项级数$\sum\limits_{n = 1}^\infty {{a_n}} $发散,且${s_n} = \sum\limits_{k = 1}^n {{a_k}} $,试讨论级数$\sum\limits_{n = 1}^\infty {\frac{{{a_n}}}{{{s_n}^\alpha }}} \ $的敛散性
证明:$\left( 1 \right)$当$\alpha = 1$时,由正项级数$\sum\limits_{n = 1}^\infty{{a_n}}
$发散知,$\lim \limits_{n \to \infty } {s_n} = + \infty $且$\left\{ {{s_n}}
\right\}$严格递增,于是
从而由极限的保号性知,存在$N > 0$,当$n > N$时,有
$\left( 2 \right)$当$\alpha < 1$时,由$\lim \limits_{n \to \infty } {s_n} = + \infty $知,对任意$\varepsilon > 0$,存在$N > 0$,当$n > N$时,有
$\left( 3\right)$当$\alpha > 1$时,设$f\left( x \right) = {x^{1 - \alpha
}}$,则由微分中值定理知,存在${\xi _n} \in \left( {{s_{n -1}},{s_n}} \right)$,使得
$\bf注1:$正项级数收敛的基本定理:正项级数收敛当且仅当其部分和数列有界
$\bf注2:$我们可得到下面命题:设正项级数$\sum\limits_{n = 1}^\infty {{a_n}} $发散,则存在收敛于$0$的正项数列$\left\{ {{b_n}} \right\}$,使得级数$\sum\limits_{n = 1}^\infty {{a_n}{b_n}} $仍发散
标签:style class ext color width strong
原文地址:http://www.cnblogs.com/ly758241/p/3706448.html