题目:
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 5013 | Accepted: 1960 |
Description
Input
Output
Sample Input
0 0 1 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0
Sample Output
3
Hint
Source
题意:有20个碗,翻转一个碗会连同翻转他旁边的碗,问最少翻几次可以把碗全部翻到正面。
思路:这道题和POJ1753很像,先用高斯消元法求出自由变元,然后枚举求出最小值。
代码:
#include <cstdlib>
#include <cctype>
#include <cstring>
#include <cstdio>
#include <cmath>
#include<climits>
#include <algorithm>
#include <vector>
#include <string>
#include <iostream>
#include <sstream>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <fstream>
#include <numeric>
#include <iomanip>
#include <bitset>
#include <list>
#include <stdexcept>
#include <functional>
#include <utility>
#include <ctime>
using namespace std;
#define PB push_back
#define MP make_pair
#define REP(i,x,n) for(int i=x;i<(n);++i)
#define FOR(i,l,h) for(int i=(l);i<=(h);++i)
#define FORD(i,h,l) for(int i=(h);i>=(l);--i)
#define SZ(X) ((int)(X).size())
#define ALL(X) (X).begin(), (X).end()
#define RI(X) scanf("%d", &(X))
#define RII(X, Y) scanf("%d%d", &(X), &(Y))
#define RIII(X, Y, Z) scanf("%d%d%d", &(X), &(Y), &(Z))
#define DRI(X) int (X); scanf("%d", &X)
#define DRII(X, Y) int X, Y; scanf("%d%d", &X, &Y)
#define DRIII(X, Y, Z) int X, Y, Z; scanf("%d%d%d", &X, &Y, &Z)
#define OI(X) printf("%d",X);
#define RS(X) scanf("%s", (X))
#define MS0(X) memset((X), 0, sizeof((X)))
#define MS1(X) memset((X), -1, sizeof((X)))
#define LEN(X) strlen(X)
#define F first
#define S second
#define Swap(a, b) (a ^= b, b ^= a, a ^= b)
#define Dpoint strcut node{int x,y}
#define cmpd int cmp(const int &a,const int &b){return a>b;}
/*#ifdef HOME
freopen("in.txt","r",stdin);
#endif*/
const int MOD = 1e9+7;
typedef vector<int> VI;
typedef vector<string> VS;
typedef vector<double> VD;
typedef long long LL;
typedef pair<int,int> PII;
//#define HOME
int Scan()
{
int res = 0, ch, flag = 0;
if((ch = getchar()) == '-') //判断正负
flag = 1;
else if(ch >= '0' && ch <= '9') //得到完整的数
res = ch - '0';
while((ch = getchar()) >= '0' && ch <= '9' )
res = res * 10 + ch - '0';
return flag ? -res : res;
}
/*----------------PLEASE-----DO-----NOT-----HACK-----ME--------------------*/
const int MAXN=50;
int a[MAXN][MAXN];//增广矩阵
int x[MAXN];//解集
int free_x[MAXN];//标记是否是不确定的变元
/*
void Debug(void)
{
int i, j;
for (i = 0; i < equ; i++)
{
for (j = 0; j < var + 1; j++)
{
cout << a[i][j] << " ";
}
cout << endl;
}
cout << endl;
}
*/
inline int gcd(int a,int b)
{
int t;
while(b!=0)
{
t=b;
b=a%b;
a=t;
}
return a;
}
inline int lcm(int a,int b)
{
return a/gcd(a,b)*b;//先除后乘防溢出
}
// 高斯消元法解方程组(Gauss-Jordan elimination).(-2表示有浮点数解,但无整数解,
//-1表示无解,0表示唯一解,大于0表示无穷解,并返回自由变元的个数)
//有equ个方程,var个变元。增广矩阵行数为equ,分别为0到equ-1,列数为var+1,分别为0到var.
int Gauss(int equ,int var)
{
int i,j,k;
int max_r;// 当前这列绝对值最大的行.
int col;//当前处理的列
int ta,tb;
int LCM;
int temp;
int free_x_num;
int free_index;
for(int i=0;i<=var;i++)
{
x[i]=0;
free_x[i]=0;
}
free_x_num=0;
//转换为阶梯阵.
col=0; // 当前处理的列
for(k = 0;k < equ && col < var;k++,col++)
{// 枚举当前处理的行.
// 找到该col列元素绝对值最大的那行与第k行交换.(为了在除法时减小误差)
max_r=k;
for(i=k+1;i<equ;i++)
{
if(abs(a[i][col])>abs(a[max_r][col])) max_r=i;
}
if(max_r!=k)
{// 与第k行交换.
for(j=k;j<var+1;j++) swap(a[k][j],a[max_r][j]);
}
if(a[k][col]==0)
{// 说明该col列第k行以下全是0了,则处理当前行的下一列.
k--;
free_x[free_x_num++]=col;
continue;
}
for(i=k+1;i<equ;i++)
{// 枚举要删去的行.
if(a[i][col]!=0)
{
LCM = lcm(abs(a[i][col]),abs(a[k][col]));
ta = LCM/abs(a[i][col]);
tb = LCM/abs(a[k][col]);
if(a[i][col]*a[k][col]<0)tb=-tb;//异号的情况是相加
for(j=col;j<var+1;j++)
{
a[i][j] = a[i][j]^a[k][j];
}
}
}
}
// Debug();
// 1. 无解的情况: 化简的增广阵中存在(0, 0, ..., a)这样的行(a != 0).
for (i = k; i < equ; i++)
{ // 对于无穷解来说,如果要判断哪些是自由变元,那么初等行变换中的交换就会影响,则要记录交换.
if (a[i][col] != 0) return -1;
}
// 2. 无穷解的情况: 在var * (var + 1)的增广阵中出现(0, 0, ..., 0)这样的行,即说明没有形成严格的上三角阵.
// 且出现的行数即为自由变元的个数.
// 首先,自由变元有var - k个,即不确定的变元至少有var - k个.
return var - k; // 自由变元有var - k个.
// 3. 唯一解的情况: 在var * (var + 1)的增广阵中形成严格的上三角阵.
// 计算出Xn-1, Xn-2 ... X0.
}
int main()
{for(int i=0;i<20;i++)
RI(a[i][20]);
for(int i=0;i<20;i++)
{
a[i][i]=1;
if(i!=0)
a[i-1][i]=1;
if(i!=19)
a[i+1][i]=1;
}
int t=Gauss(20,20);
int tot=1<<t;
int ans=INT_MAX;
for(int i=0;i<tot;i++)
{ int cnt=0;
MS0(x);
for(int j=0;j<t;j++)
{
if(i&(1<<j))
{
x[free_x[j]]=1;
if(x[free_x[j]])
cnt++;
}
}
for(int j=19-t;j>=0;j--)
{
int temp=a[j][20];
for(int k=j+1;k<20;k++)
{
if(a[j][k])
temp^=x[k];
}
x[j]=temp;
if(x[j])
cnt++;
}
ans=min(ans,cnt);
}
printf("%d\n",ans);
return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
POJ 3185 The Water Bowls(高斯消元法,枚举自由变元)
原文地址:http://blog.csdn.net/u013840081/article/details/48039707