标签:
题意:计算从1开始到第n个非完全平方数的开方和
分析:设第n个非完全平方数的值为a,x * x < a < (x+1) * (x+1),而且易得(tmp = sqrt (a) ) == x,a之前的非完全平方数的个数为a - tmp,所以可以二分查找a - tmp == n的a,然后模拟一下能计算出前a个数的开方和
收获:二分查找是个好方法
代码:
/************************************************ * Author :Running_Time * Created Time :2015-8-27 16:14:57 * File Name :C.cpp ************************************************/ #include <cstdio> #include <algorithm> #include <iostream> #include <sstream> #include <cstring> #include <cmath> #include <string> #include <vector> #include <queue> #include <deque> #include <stack> #include <list> #include <map> #include <set> #include <bitset> #include <cstdlib> #include <ctime> using namespace std; #define lson l, mid, rt << 1 #define rson mid + 1, r, rt << 1 | 1 typedef long long ll; const int N = 1e5 + 10; const int INF = 0x3f3f3f3f; const int MOD = 1e9 + 7; int main(void) { int T; scanf ("%d", &T); while (T--) { int n; scanf ("%d", &n); ll l = 1, r = 1e12, ans1 = 0, ans2 = 0; while (l <= r) { ll mid = (l + r) >> 1; ll tmp = sqrt (mid); if (mid - tmp == n) { ans1 = mid; if (tmp * tmp == mid) ans1--; break; } else if (mid - tmp > n) r = mid - 1; else l = mid + 1; } ll tmp = sqrt (ans1); for (ll i=1; i<tmp; ++i) { l = i * i, r = (i + 1) * (i + 1); ans2 += (r - l) * i; } ans2 += (ans1 - tmp * tmp + 1) * tmp; printf ("%I64d %I64d\n", ans1, ans2); } return 0; }
二分查找+数学 HDOJ 4342 History repeat itself
标签:
原文地址:http://www.cnblogs.com/Running-Time/p/4765521.html