码迷,mamicode.com
首页 > 其他好文 > 详细

MapReduce执行流程

时间:2015-08-28 13:12:19      阅读:164      评论:0      收藏:0      [点我收藏+]

标签:

技术分享

角色描述:
JobClient:执行任务的客户端
JobTracker:任务调度器
TaskTracker:任务跟踪器
Task:具体的任务(Map OR Reduce)

从生命周期的角度来看,mapreduce流程大概经历这样几个阶段:初始化、分配、执行、反馈、成功与失败的后续处理

每个阶段所做的事情大致如下

任务初始化

1.JobClient对数据源进行切片
切片信息由InputSplit对象封装,接口定义如下:

[java] view plaincopy
 
  1. public interface InputSplit extends Writable {  
  2.     long getLength() throws IOException;  
  3.     String[] getLocations() throws IOException;  
  4. }  

可以看到split并不包含具体的数据信息,而只是包含数据的引用,map任务会根据引用地址去加载数据
InputSplit是由InputFormat来负责创建的

[java] view plaincopy
 
  1. public interface InputFormat<K, V> {  
  2.     InputSplit[] getSplits(JobConf job, int numSplits) throws IOException;  
  3.     RecordReader<K, V> getRecordReader(InputSplit split,JobConf job,Reporter reporter) throws IOException;  
  4. }  

JobClient通过getSplits方法来计算切片信息,切片默认大小和HDFS的块大小相同(64M),这样有利于map任务的本地化执行,无需通过网络传递数据
切片成功后,JobClient会将切片信息传送至JobTracker
2.通过jobTracker生成jobId
    JobTracker.getNewJobId()
3.检查输出目录和输入数据源是否存在
    输出目录已存在,系统抛出异常
    输入源目录不存在,系统抛出异常
4.拷贝任务资源到jobTracker机器上(封装任务的jar包、集群配置文件、输入源切片信息)

任务分配

JobTracker遍历每一个InputSplit,根据其记录的引用地址选择距离最近的TaskTracker去执行,理想情况下切片信息就在TaskTracker的本地,这样节省了网络数据传输的时间
JobTracker和TaskTracker之间是有心跳通信的逻辑的,通过彼此间不停的通信,JobTracker可以判断出哪些TaskTracker正在执行任务,哪些TaskTracker处于空闲状态,以此来合理分配任务

任务执行

TaskTracker接到任务后开始执行如下操作:
1.将任务jar包从HDFS拷贝到本地并进行解压
2.TaskTracker 为每个 Task 启动一个独立的 JVM 以避免不同 Task 在运行过程中相互影响



如果所执行的任务是map任务,则处理流程大致如下:
首先加载InputSplit记录的数据源切片,通过InputFormat的getRecordReader()方法
获取到Reader后,执行如下操作:

[java] view plaincopy
 
  1. K key = reader.createKey();  
  2. V value = reader.createValue();  
  3. while (reader.next(key, value)) {//遍历split中的每一条记录,执行map功能函数  
  4.     mapper.map(key, value, output, reporter);  
  5. }  

执行反馈

mapreduce的执行是一个漫长的过程,执行期间会将任务的进度反馈给用户
任务结束后,控制台会打印Counter信息,方便用户以全局的视角来审查任务

执行成功

清理MapReduce本地存储(mapred.local.dir属性指定的目录)
清理map任务的输出文件

执行失败

1.如果task出现问题(map或者reduce)
错误可能原因:用户代码出现异常;任务超过mapred.task.timeout指定的时间依然没有返回
错误处理:
首先将错误信息写入日志
然后jobtracker会调度其他tasktracker来重新执行次任务,如果失败次数超过4次(通过mapred.map.max.attempts和mapred.reduce.max.attempts属性来设置,默认为4),则job以失败告终
如果系统不想以这种方式结束退出,而是想通过Task成功数的百分比来决定job是否通过,则可以指定如下两个属性
mapred.max.map.failures.percent            map任务最大失败率
mapred.max.reduce.failures.percent        reduce任务最大失败率
如果失败比率超过指定的值,则job以失败告终

2.如果是tasktracker出现问题
判断问题的依据:和jobtracker不再心跳通信
jobtracker将该tasktracker从资源池中移除,以后不在调度它

3.jobtracker出现问题
jobtracker作为系统的单点如果出现问题也是最为严重的问题,系统将处于瘫痪

MapReduce执行流程

标签:

原文地址:http://www.cnblogs.com/bendantuohai/p/4766161.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!